Tag Archives for " ventilation "

So you’re in the market for a new car? With or without New Car Smell?

So you’re in the market for a new car?  With or without New Car Smell?

If the idea of driving a new car is appealing, you may need to educate your nose to accept that the new car smell is not a good thing.  Thankfully, many automakers are becoming conscious of the dangers of volatile organic compounds (VOCs) that compose most new car smells, and are taking steps to reduce them.  Not a small driver for this is the new car market of China.  Over 11% of buyers in China complained about the odors they found in their new cars, according to the 2019 JD Power China Initial Quality Study. (The Self-Poisoning Car)  Apparently, Chinese prefer for their new cars to have no smell at all, which makes sense due to their genetics.  Many Asians possess a less functional acetaldehyde dehydrogenase enzyme, which is responsible for breaking this VOC down, therefore they may be especially susceptible to its allergenic effects. 

When you know about what is in the “new car smell”, you might not be too disappointed when it fades away!  Most of the smells are due to VOCs, some toxic ones at worst.   The sources are varied:

  • Residual compounds from the manufacturing process and material treatment of different interior components and textiles.   These include flame retardants (FRs), of which tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency in a 2024 study.  TCIPP was the dominant FR detected in the vehicle seat foam, and air concentrations of this chemical increased with increasing temperature.     
  • Adhesives and carrier solvents that will de-gas – as much as 2kg of adhesive can be found in a modern car, much higher than in the past where mechanical riveting and bolting was more common]
  • Degradation of cabin materials over the longer term as a result of oxidation, ultra-violet light and heat. 

There are no worldwide standards for interior VOCs on new cars, but Asian countries seem to have some of the most well-defined guidelines.  Here are some of them:

Source: The Self-Poisoning Car

Testing VOCs with professional equipment can yield surprising results.  Even in a 1-year old gasoline Hyundai i10 (an economy car produced in India but not sold in the US because it was deemed too lightweight), methanol and acetone rose dramatically as the car stood in the sun for 5 hours, only reaching 68 degrees F.  After the five hour test without the engine on, the car was started, windows rolled up and AC on max with recirculation mode.  This yielded another surprise: some VOCs such as acetaldehyde rose steeply during the fourth to sixth minutes. During this phase acetaldehyde concentrations rose from an initial base of approximately 50 to 550 μg/m3, more than ten times the regulated limit in China and Japan. It was suspected that the air conditioner acted as a “sink” for some VOCs, which was flushing them out during this time.  (The Self-Poisoning Car)

VOCs in cars have even led to a new condition: Sick Car Syndrome (SCS), a phenomenon in which drivers and passengers experience short-term health problems owing to the accumulation of volatile organic compounds (VOCs) in vehicle cabins [1], [2] and is particularly prominent in new rarely used cars. The symptoms of SCS include irritation of the eyes, nose, and throat, headaches, and dizziness, among other symptoms, with potential long-term health consequences.  (Elevated volatile organic compound emissions from coated thermoplastic polyester elastomer in automotive interior parts: Importance of plastic swelling)

Some solutions from automotive material suppliers include: 

  • UK company Aqdot has introduced the product Aqfresh, which is a powder composed of barrel-shaped molecules with a hollow hydrophobic cavity and polar portals, enabling them to tightly bind a wide spectrum of unwanted molecules.  Aqfresh can be applied to textiles via dry impregnation, as well as by spraying and padding during the finishing process.  It can also be incorporated via compounding or polymer masterbatch into rigid plastic parts such as dashboards and other trim pieces.  
  • 3M has developed low VOC adhesive tapes and a water-based spray-on adhesive (no VOCs) that meet the Japanese Automobile Manufacturers Association (JAMA) standards for nine substances with defined limits for vehicle indoor air quality (VIAQ).  
  • POM is an acronym for the chemical name polyoxymethylene. It is generally referred to as polyacetal or acetal resin.  POM has a number of applications in cars where it replaces metal such as door locks, fuel system parts, door rollers, and clips to hold trim in place.  It has properties of durability, oil and chemical resistance, and self-lubrication.  However, traditionally POM was a source of formaldehyde.  Polyplastics has developed a number of grades of POM that are low-VOC in its DURACON® POM LV Series

Although there are some brands that historically have higher customer ratings for interior air quality (like Honda), the last comprehensive survey of new car VOCs was in 2012, and recent reports by individual automakers regarding interior VOCs are very hard to find.  You can definitely call individual manufacturers and inquire about VOCs while shopping, but when it comes down to deciding,it’s best to see/test cars in person:  What you see in a “floor model” may not be what you get in your delivered car, either, since a 2007 study showed that interior VOC emissions varied greatly between makes, models and trims and even within the same make/model/trim.

You can do a lot to rid your car’s interior of most of its VOCs. Here are some tips to do it (How to Get Rid of That New Car Smell (Step by Step))

  • Heat, ventilation, and time are certainly the main ways to offgas a vehicle. You can heat it by putting it in the sun, by running the heating system, or even with space heaters (very carefully in a small space).  When you are heating materials you are releasing the VOCs and also creating new VOCs (this study explains), so make sure when you are heating up the new vehicle you are airing it out substantially at the same time so that the gasses have somewhere to go.  Windows should be open while you are heating the vehicle. Windows can also be left open anytime it’s safe to do so.
  • Deep clean the vehicle with non-toxic products:
    • You can use AFM Carpet Shampoo to deep clean carpets and upholstery; just make sure not to soak these surfaces in order to extract all the water and prevent mold growth.
    • Vacuum frequently with a HEPA vacuum.
    • Wipe down hard surfaces with disposable cleaning cloths so that you can throw them away after picking up dust, which is what many chemicals from the plastic bind to.  TotalClean is a non-toxic cleaner that’s safe for cleaning soft or hard surfaces in the car (again beware of soaking soft surfaces, however, because of the danger of mold and water rings when the material dries.)
    • Use an adsorbent like activated charcoal.  You can cut and place this filter media wherever you want in the car, and even use large pieces of it to cover seats when you’re not using them.  
    • Use an Air Angel all the time; the AHPCO cell is especially good at removing VOCs, and you can use it from your car’s power plugs while driving, or plug it into a wall receptacle via extension cord in your garage.
    • Unfortunately, flame retardants used in the foam parts may continue to off-gas for the life of the parts, so use fresh-air ventilation whenever you are driving and the outside air pollution permits you do so.

If VOCs are not reduced through the heat, ventilation and time method, you can block them using sealants. This really is the last resort, because sealing prevents further offgassing.  AFM makes a number of non-toxic products for this purpose and questions about their best application can be answered by The Green Design Center.

  • Fabric seats and carpet: AFM Lock-Out is sprayed on.
  • Vinyl: AFM Hard Seal is applied in thin coats using a sponge
  • Other Plastic Surfaces: AFM Acrilaq is best applied with a pad applicator in 3 light coats, sanding lightly between coats. .

 

If you’re used to the good old-fashioned “smells” of just fresh air and sunshine, ditching the new car smell should not be hard for you…hopefully it’s the same for whoever else will be driving your new car.  A final option would be to look for a lightly used car from someone with non-toxic habits–just like the price, the VOCs should also be reduced considerably, and even if it was “professionally cleaned” by a dealership, those cleaning chemicals can be removed using the same steps above.  Goodbye, little air freshener trees, hello fresh air!

Photo by Sarah Brown on Unsplash

What happens behind closed doors…

What happens behind closed doors…

What happens behind closed doors…is STAGNATION!  When you close the door to a room in your home, air is trapped in the room, resulting in the following:

  • If there is no fan operating, air will not circulate, and any humidity present in the air will saturate soft furnishings, increasing the likelihood that mold will grow (see our article on ventilation and one of our favorite tools, dpcalc.org).

  • If central air conditioning or heating is pushing air into the room, the closed door prevents proper cycling of air out of the room, causing the system to a create a negative pressure zone near the return grille and placing stress on the system’s mechanical parts like blower motors.

  • Again, central air conditioning or heating with closed doors causes imbalances in the temperature of the home, because conditioned air is prevented from mixing, which in turn affects the thermostat and causes the system to run longer to reach the temperature set point.

Keeping doors closed, in other words, is just not good for proper ventilation in your home!  This makes sense to us…until the question of privacy is brought up.  Of course, not everyone wants their door to be open at all times, even if it’s just cracked open.  Don’t worry, there are ways to get good ventilation even with closed doors!

The best solutions are brought in during the design phase of the home, before construction begins.  This is where our first idea is best incorporated.  Transfer grilles offset high/low in a wall cavity use the cavity to muffle sound, so that this design affords  the maximum privacy.  However, in order to avoid entraining dust and other building toxins from surrounding spaces, the cavity needs to be sealed by gluing the drywall to the studs and plates…meaning that this solution needs to be built in during construction.

Source: Building America Solution Center

If you’re realizing you need better air circulation after construction, then there are still more solutions to consider.  You can use a back-to-back grille over a door (or any high space on a shared wall), which have sheet metal baffles to block sound and light while still allowing the passage of air through the wall.  Here are some diagrams to show back-to-back grilles:

Source: Building America Solution Center

Thirdly, if wall space is an issue and you have attic space above the rooms, you could install a jump duct using flexible duct, two ceiling grilles, and foam sealant (to make sure air from the attic does not leak into your home).  Theoretically, a jump duct could also be placed through/under the floor to bridge two spaces, but in either place, take care to make sure the flexible duct is not crimped, and do not cut any structural beams like rafters or joists to install it.

Source: Building America Solution Center

Lastly, there’s a solution which I consider to be the easiest of all of these.  In-Door Return Air Pathways by Tamarack Technology are easily installed in the bottom of your hollow-core or solid wood interior doors (door must be 1-3/8” thick to fit).  Simply remove the door from the frame (I find that tapping the hinge pins out is easiest), lay it down, trace the provided template on the bottom of the door, cut it with a jigsaw, install the grille with two screws (provided) and re-install the door.  They do provide less privacy than the previous two options, but are quick to install (less than 30 minutes in my experience) and can be left white or spray painted to match any door color with paint suitable for plastic. 

In-Door Return Air Pathway installed in a solid wood door.

When you have the door closed with any of these three solutions, air is free to mix with the rest of the home, rooms do not become positively or negatively pressured, and you definitely have an advantage in keeping mold from forming in that room.  Additionally, the continuous use of the following in the closed room costs very little energy, but boosts your mold protection even more: 

Sure, we get it…everyone needs their privacy, but for health’s sake, make sure the air is flowing freely!  

Photo by Storiès on Unsplash

Better bedroom ventilation = better sleep quality

Better bedroom ventilation = better sleep quality

Have you ever wondered why you’re not sleeping well?  We have quite a few suggestions for better sleep, but there’s one more (invisible) thing that can negate the others: CO2.  Sleeping in a stuffy bedroom does not enable quality sleep!  It turns out that you need “fresh air” even when you’re not conscious of it.  A new study shows that CO2 concentrations in the bedroom above 750 ppm affect your sleep and as a consequence, your cognitive performance is lower the next day.

In the 18-month study, 36 healthy college-age men and women volunteered to sleep for a week each in furnished bedrooms where their sleep was analyzed.  The levels of CO2 varied during the week: the first night was not included in the study (for adaptation), but then two nights each of three ventilation conditions were used to approximate CO2 levels of 750 ppm, 1,000 ppm and 1,300 ppm.  Sleep quality was monitored with wristband sleep trackers.  Salivary cortisol concentrations were measured upon waking also, as elevated cortisol levels correspond with decreasing sleep quality.  Overall, the researchers found that compared with ventilation causing an average CO2 concentration of 750 ppm (fresh air scenario), sleep quality was significantly reduced at the ventilation rates causing CO2 concentrations of 1,000 ppm and 1,300 ppm.  Sleep efficiency was reduced by 1.3 % and 1.8 % and time awake increased by 5.0 min and 7.8 min, respectively. Deep sleep duration decreased at the ventilation rate causing CO2 concentration of 1,300 ppm as compared to 750 ppm along with a significant increase in salivary cortisol after waking, which suggests increased stress and sympathetic activity. 

The takeaway from this study is to try and ventilate your bedroom with fresh air at night to simulate outdoor CO2 levels (450-500 outdoors is normal, up to 750ppm).  Obviously the best way to get fresh air is to open one or more windows, and windows don’t actually need to be fully open to achieve it.  By using a CO2 monitor near your bed, you can experiment to see how wide open 2the windows need to be.  If you live in a quiet suburb or country setting, it’s not too hard to install insect screens and do this.  However, there are lots of areas and circumstances that aren’t so simple!  We want to suggest some products and ways to help.

What if it’s too hot or humid or rainy outside to open my windows?  

  • In this case, the best solution is to install a window air conditioning unit that has a fresh air intake (not all of them do).  If you’re buying a new air conditioner, you may also want to look for one with inverter technology (it dehumidifies the air better and operates more efficiently) and upgraded air filter.  
  • If you have an existing window unit with no fresh air intake, you modify the weatherization around the unit (on the sides or bottom) to allow fresh air to “leak” into the room.  
  • If you have central air conditioning already, you should only need to open the windows about 1” to get enough fresh air to lower CO2 levels below 1000 ppm.
  • If you live in a quiet but rainy area, using a product like the Invisible Awning Rain Guard, $35-40, allows you to open your windows and ventilate, even during a storm.
  • If rain is the problem, here are two window fans that will help:

What if I live in an area with a lot of air pollution, like in a city or near busy roads?

While CO2 is not good for sleep, other types of air pollution like NOx (nitrous oxides) and particulates may be just as bad or worse, so we understand the need for outside air to be filtered.  Depending on the severity of your area, we have two products that can help:

  • The Window Ventilation Filter, $40-50, has an 11” height and reduces dust, dirt and was tested to remove 94% of ragweed pollen.  It also keeps out rain, snow and mild wind.
  • Nanofiber PureAir Window Screens, $40, cover approximately 3-4 average window screen panels.  They are transparent (so your view is not blocked) and use electrostatic adsorption to block particulates.
  • Medify has a great selection of HEPA air purifiers which can be sized according to your room.  All units are equipped with a pre-filter, True HEPA H13 or H14, and active carbon filter.  The active carbon filter is what will remove the VOCs in traffic and industrial pollution.

What if I live in an area where it’s not safe to keep the windows open? 

Security, of course, trumps fresh air…but you can have both if you secure a small window opening with a latch or lock.  It can also prevent children from opening the window too far and falling out.  One thing you’ll need to keep in mind, however, is fire safety; if the window is your safety exit in the case of a fire, you’ll need to make sure the key remains nearby if you lock it.

  • MiniLatches, $69, are pricey but well-made.  They are sized to allow fresh air in but prevent any indoor cats from going out.
  • Stainless Steel Window Chain Locks, $19, are very sturdy
  • Window Security Bars, $50 for a pack of 4, are easily adjustable and installed, and can be used on vertical or horizontal sliding windows and doors.

What if I don’t have a window in my bedroom?

“Fresh air” doesn’t always have to come from windows.  If your bedroom is an interior room, you’ll need to either use the central air conditioning system or create ventilation pathways to bring in fresh air from the rest of the house.

  • If your house is tightly built, it’s a great idea to add a fresh air intake.  Heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) minimize the heat and humidity losses of bringing in fresh air and exhausting stale air (ERV’s are recommended for more humid climates).  That way, fresh air comes into all parts of the home and having a window to open is not necessary.  For more on HRVs and ERVs, check out our article here.
  • If your room doesn’t have central air conditioning, you can have privacy and better ventilation by adding grilles in the wall or door.  We discuss four options to do it in this article.
  • If you can’t modify the walls or door, you can still have some security by using a Door Chain Lock ($7 for 2-pack) that will allow your door to open slightly and let more air flow in.  

Here’s a pictorial summary of the ventilation recommendations:

Source: Ventilation causing an average CO2 concentration of 1000 ppm negatively affects sleep: a field-lab study on healthy young people

The bottom line is…a lot of our comfort and well-being depends on how well we sleep.  Measure your bedroom CO2 in the morning before exiting (with the door closed) and if it’s above 1000 ppm, research your options for better ventilation.  Ventilate your bedroom tonight for a better day tomorrow!

Photo by Storiès on Unsplash

Are Tiny Homes built from Sheds a Good Idea?

Are Tiny Homes built from Sheds a Good Idea?

At least every other day, I see an ad for a tiny home or office that companies or individuals built from what used to be backyard “sheds”.  Now, don’t get me wrong, I am all for repurposing buildings and materials, when they are done the right way!  (In fact, I even repurposed a large metal workshop building into a 2 bed/1.5 bath “condo” for my parents.  This one is on a concrete slab and for all intents and purposes, could have been built that way as a home). What are the advantages, and what are the cautions, of making a home from a shed?  (Many great points adapted from Living in a Shed: 9 Things (2023) You Must Know):

The advantages to living in a tiny home are many, for example:

  • Up-front cost is cheaper than a house
  • Smaller utility bill
  • Less square footage to clean
  • Less impact on the environment
  • Privacy
  • Portability
  • Customization
  • Ability to live in nature or “off-grid” more easily

However, “sheds” are only a subset of tiny homes, specifically, tiny homes that started out as prefab backyard buildings.  Let’s take a look at what could go wrong from making one of these into a habitation.

First of all, when considering whether to build out a shed as a home, you should check into local building codes.  If you live within city limits, there are likely laws about what type of buildings can be built or placed on your property to become “habitations”.  Plopping a shed down and running electricity to it for your teenager to live in could be a big problem whenever it’s noticed by the building inspectors!  Moving it to the middle of a few acres in the country doesn’t normally pose these legal issues, but again, it’s best to check with your local building inspector!   If it’s illegal to live in a shed, it may be legal to live in an ADU-an Accessory Dwelling Unit.  For example, ADU’s in California are required to be at least the size of an efficiency unit (at least 150 sq. ft. livable space plus a bathroom), they must contain a kitchen, a bathroom, they must be built on a permanent foundation, and must be able to turn on/off the ADU utilities without entering the primary unit.  (ADU vs Finished Shed Comparison)

Construction: This is the largest area of caution we see.  Within this topic, we need to highlight: 

  • Off-gassing of toxic compounds from interior building materials.  If the building was never meant for habitation (even as a chicken coop!), then it may contain building materials that are rated for “outdoor use only” which may give off dangerous pesticides/weatherization chemicals.
  • Inferior flooring and framing techniques:  We’ve seen them: sheds built to hold push lawnmowers and Christmas decorations may not hold up to daily living over a number of years.  Holes or loose joints that develop inevitably allow pests to come in (they want to be cool/warm/fed too!).  
  • Inferior foundation: Setting a shed on a few cinder blocks is typically not sufficient for daily living and if the floor begins to sag, all kinds of structural issues (including leaks and mold) can ensue. 
  • Poor insulation:  Typically, storage sheds only need to keep the paint from freezing, not keep a person comfortable, so insulation may not be optimal.  This includes roof and floor insulation–yes, if your shed is not mounted to a slab foundation, it needs to be insulated!
  • Improper sealing (which can cause moisture infiltration and mold growth): If siding is applied over the frame without an air or vapor barrier, it’s easy for moisture to condense inside the walls if they are heated for a living space, or similarly cooled during a hot summer.  These steps in normal construction are what inspectors look for, for the safety of the homeowner and longevity of the building.
  • Addition of water and sewage facilities warrants several considerations:
    • Where is your water source and how will you deal with sewage?  Sewage service is probably the biggest hurdle to overcome, as there are 3 options which may or may not be permitted in your locale: connection to the city’s sewer system, installing a septic tank, or installing a composting toilet. 
    • Plumbing in sinks, toilets, showers and drains also is done by code for a reason–leaks can cause serious mold and hygiene issues.  It’s not a good idea to buy that shed if these appliances are added without proper spacing and materials by someone who knows plumbing code.
  • Addition of power to the shed:  Sometimes power service to a shed (50-100 amp service) is not what you would get for a normal home (200 amp service).  Like the plumbing, wiring the shed for power should be done by someone who knows electrical code, so that it’s wired safely!
  • Addition of HVAC to the shed: Sticking a “window unit” AC or space heater in the side of the shed may keep you cool or warm if it’s the right size, but without proper ventilation, you could build up CO2 and mold very quickly.  CO2 is the product of insufficient ventilation, and face it, a shed is just a small, closed room unless proper ventilation is planned and built-in!  The mold can result from simply living in that closed room, because along with CO2, every human exudes water vapor through their lungs and skin.  If there are 2 people living there, the air quality will be even worse.

So far, it may sound like a major “NO” to use sheds as homes, but that’s just not true.  If you’re allowed to use one in your locale, you can safely do so by starting from scratch (buying a bare-bones model) or buying one from a builder that knows good home construction.  Then you can make sure that the construction, outfitting and customization will work for years to come without causing health issues.  Let’s face it, home ownership is expensive, but saving on a tiny home just to live uncomfortably from lack of weatherization or get sick from mold is definitely not worth the savings.  Therefore, planning is essential!

Photo by Andrea Davis on Unsplash

Get more fresh air ventilation with Nanofiber Window Screens (Easy DIY Project!)

Get more fresh air ventilation with Nanofiber Window Screens (Easy DIY Project!)

If you’ve never thought about them, it’s time to give your window screens some attention.  If your windows open, you’ll want to have screens that are clean and in good repair to keep out insects and other creepy crawly things (won’t go into what could possibly come through an open window).  It’s even more important in seasons of extreme heat or power outages to have a way to get fresh air.  Keeping your windows closed all day can cause levels of CO2 to build up in your home that cause drowsiness and inability to focus or concentrate (check out our article here), so it’s best to let some fresh air in whenever the outside air temperature, humidity and quality permit.

Window screens have been around for a long time (like the 1800’s!) but even age-old products can get an upgrade, making our lives easier.  This upgrade doesn’t have to involve AI or “smart” anything, requiring the internet and electricity.  In this case, window screens have been upgraded with a new material, nanofiber.

Traditionally, window screening came in several varieties of material and color, such as aluminum and fiberglass, and black, silver, gray or bronze colors.  Standard screens have a mesh size of 18 by 16, meaning there are 18 squares per inch from the top left corner to the top right corner (also referred to as warp) and 16 squares per inch from the top left corner to the bottom left corner (also referred to as fill). (Replacement Window Screen Buying Guide)  These are able to prevent most flying insects from passing through, but they do allow a lot of dust and smaller particles to pass through.   The use of nanofibers (each fiber is less than the width of a human hair) allows the holes to become much smaller, because they are spaced very closely, allowing air but not fine particulates to pass through.  Voila!  Nanofiber window screens offer protection from the next “pest”, dust and allergens.  By just replacing the screens you already have with nanofiber material, you can save yourself some cleaning, coughing and add the ability to open your windows more often because of this protection.   What’s even better is that it doesn’t take a lot of time or special tools (just one cheap one) to replace the screen material with some new nanofiber screening.

Here’s the DIY part: replacing your screens with nanofiber screens is a homeowner project that just takes a few hours and supplies.  If you’re not familiar with how window screens are held in place, they are held into the narrow channel on the screen frame with a rubbery spline, or cord.  

There’s also an ALTERNATIVE INSTALLATION with Magnetic Tape (which is practical if your screen frames are broken or missing).  Scroll down to the bottom of this article for the alternative installation.

Here’s what you’ll need for the traditional installation:

  • The nanofiber window screen (order yours here)

  • Spline (if the spline in your screens is not cracking or falling apart, you can reuse it)

  • Window screen rolling tool, $4

  • Small flat-head screwdriver

  • Sharp utility knife to trim the screen after installation

There are lots of videos online showing how to replace screens, but I like this one for its simplicity (step 1 starts at 1:50).  Here are the basic steps:

  1. Remove old spline and screen

  2. Size and align new screen over the frame (1-2 inches extra on each side)

  3. Push screen into channel on first side (using the convex side of the tool)

  4. Insert spline into grooved screen and channel (using the concave side of tool) (Repeat steps 3 and 4 for other sides)

  5. Push spline into corners using screwdriver, trim excess screen carefully with utility knife

And here are some additional tips:

  • If you have to get new spline, take a small piece of the old stuff to the hardware store in order to select the right diameter.

  • Some people like to hold the frame in place by taping it to the work surface, but this doesn’t allow you to rotate it easily if you can’t access all 4 sides of your work surface.

  • You can use a gallon of water or full can of paint to help hold the screen in place to get started.

  • Some people like to use the spline in one length, bending it at the corners as you go around; some like to cut it at each corner. 

  • Be careful not to press too hard on the spline as you work, in case your tool slips, so that you don’t cut the screen accidentally.

  • Normally you shouldn’t have to “stretch” the screen, just gently smooth it out, while rolling the last two sides, as you don’t want too much tension on the frame when you’re done.

  • If you get too frustrated or find that one of the screen frames is broken, many small hardware stores offer “rescreening” services and repair of the frames; just bring them your nanoscreen with the frame(s).

It may take a little more time to get your first screen replaced, but you’ll get better as you go along and have some new functional “filters” in your windows.  Sit down to enjoy the fresh, clean air and admire the fruits of your hard work!  After a few months, you will notice dust collecting on the outside of your screens as they do their job, but you can easily clean them by removing them and using a gentle spray of water on them from the inside out to wash off the dust.  If necessary, use a mild detergent like liquid dish soap or car wash soap and a soft brush to remove any stubborn dirt or bird poop. 

Nanofiber window screens can help you breathe easier all year long, because let’s face it, there always seems to be an “allergen” in the air.  They can also cut down on the dust going onto your HVAC filter, your TV screens, your rugs and furniture—you name it!  Maybe most importantly, they can help you open windows for fresh air more often and be prepared for a power outage in the summer, when open windows (but not dust!) are a necessity.  

ALTERNATIVE INSTALLATION:  Many times the screen frame is broken or missing altogether, or you’re just not sure about doing the traditional install yourself.  Instead, you can use Magnetic Tape to install the screen.  The kit has everything you need to make a nice, flexibly-framed screen that installs easily over your window frame.  (Note that you’ll need to remove the screen to open or close the window, but that’s easy to do.)  The video on the product page gives step by step instructions.

Tight homes need ventilation, but what do I do when it’s smokey outside?

Tight homes need ventilation, but what do I do when it’s smokey outside?

If you’re blessed to be living in a “tight” home (one that doesn’t allow much unintentional air leakage), you should know that mechanical ventilation is really helpful, if not necessary, to achieve healthy indoor air.  Humidity, CO2, particulates and VOCs can build up inside your tight home and without intentional ventilation, can lead to major mold and health problems quickly.  In this case, many people opt for an ERV or HRV so that the energy savings on their tight home don’t go “out the window” (literally!) by exhausting indoor air and pulling in outdoor air without some kind of energy exchange.   For more basic information on building tightness, ERVs and HRVs, check out our article here.

If you have an HRV or ERV and live in an area prone to wildfires, you should prepare for them by having the proper filters in place and knowing what to do with your system.  We’ve helped several clients prepare for this scenario recently, and the “smoke” was not all from wildfires!  Sometimes neighbors with bad or even innocent habits like smoking, barbequing, or sittin’-round-the-campfire can all wreak havoc on your air quality.

First of all, be familiar with your HRV/ERV unit!  This means knowing where it is, how to change its filters, and how to operate the different modes.  Hopefully the installer did a good job of allowing room for maintenance, because just like a furnace/air handler, the filters must be changed or cleaned regularly in order for the unit to work well for many years.  

Many units only come with standard MERV 8 filters, but these are not adequate to handle smoke.  Smoke presents 2 problems: particulate matter (PM10 and PM2.5) and volatile organic compounds (VOCs).  According to the US EPA, a HRV or ERV unit filter must have a Minimum Efficiency Reporting Value (MERV) of 13 to provide effective protection against particulate matter in the air we're going to breathe inside a home or office building if it's smokey outside. (How to keep wildfire smoke out of homes with mechanical ventilation systems?)  Therefore, you’ll need to know what grade filters are in your unit now, and if they are below MERV 13, inquire with the manufacturer on which filters to upgrade to. 

Before you buy new filters, however, you should consider the other part of smoke: VOCs.  You can have a MERV 16 in your unit, but it will not capture VOCs and your home will be filled with the smell of smoke if there is smoke outside!  These insidious gasses are most easily removed with activated carbon.  Therefore, a layered filter (with MERV13 or more plus activated carbon) is really the best defense against smoke.  Since not all units/manufacturers offer carbon in their filters, here are some other options to get rid of the particulates AND VOCs: 

  • Check our offerings to see if we have your filter size in a MERV 13 filter plus carbon.
  • If not, you can cut and layer activated carbon media behind/under your manufacturer’s MERV 13 filter.
  • ((Some units use “panel” filters which are basically squares of bulk filter cut to fit the unit.  In this case you can cut your own using laminated MERV 13 and carbon media. ))

The following options are adapted from HRV with Smoke Filtration:

  • Ensure there is positive pressure inside the house during wildfire events (some ERVs like Panasonic ERV can be balanced to deliver more air than is exhausted from home) so that smoke never wants to come in “illegally”.  
  • Add an inline fan/filter to the intake of the ERV.  This would generate additional positive pressure without overloading the ERV fan and also filter the air before it hits the ERV.  This one has a MERV 13.
  • Get a local HVAC shop to fabricate a filter box that uses a regular furnace filter with MERV 13 (or higher) and carbon, sized sufficiently to overcome any static pressure concerns, and install it in the fresh air intake before the HRV, OR you can add a media filter cabinet to the fresh air intake of your HRV/ERV and leave out the HRV/ERV filter on that side.  We can help with calculations on sizing the cabinet if you have the model of HRV/ERV available (basically it comes down to airflow/CFM). 
  • Lastly, you could add one or more air purifiers or Corsi-Rosenthal cubes (CR cubes) with HEPA/carbon) to your home.  However, this is not ideal because the pollutants have already entered your home and you’re relying on these purifiers to clean your air, instead of having a “guard” filter at the entrance.

Now, here’s the part which requires discernment: in which mode to use the HRV/ERV.  

According to this article on how to keep wildfire smoke out of your home, the intake dampers of HVAC systems should be closed during wildfire incidents, and the equipment should be configured to only recirculate indoor air.  Before any smoke event occurs, you should check that the intake dampers have seals on them and they actually close tightly.  In case you think that you would run out of oxygen in a very short time in this scenario, that just isn’t the case.  Consider this calculation for 1 person staying in a completely sealed space of approximately 600 ft2; they would possibly die of carbon dioxide poisoning (at 12 days!) before low oxygen would be an issue.  Here’s where having carbon in your filters is also good, because it can also filter out some CO2 from inside your home while you close the outside vent and recirculate.  We think that a CO2 meter is a great thing to keep on hand whether or not your home is tightly sealed, and especially if you have any combustion appliances (like gas stoves, water heaters, furnaces, dryers, etc.)  

(I wouldn’t even worry about this “12 days” deadline, either, because very-tightly sealed homes are very rare!  A home in Alaska currently holds the record for being the world’s tightest home, and the owner/builder took the ingenious route of building a “box within a box” in order to air-seal and insulate it well enough for the climate.  At 600 ft2, it has a rating of 0.05 air changes per hour at 50 pascals of pressure (ACH50).  This is less than 10% of the very rigorous Passivhaus standard, which is 0.60 ACH50.)  

So, recirculating air instead of bringing in outside smokey air has a few benefits:

  • It saves your filters and uses them only to filter the small amount of smoke that leaks in through unauthorized leaks (or briefly opening a door). 
  • It maintains the air quality of the room above that which you would have if you were bringing in outside smokey air.
  • Depending on where the intake filter is located, it could save you cleaning your HRV by not passing unfiltered smokey air through it.

This last point may not be obvious, but not all HRV/ERV manufacturers consider that wildfire smoke is a real threat to the operation of their units, because some have intake filters on the exhaust side of the heat exchanger:

Source: “How ERVs Work”

Do you see the “Fresh air from outside” on the lower left?  Imagine that this is “smoky air from outside”, passing through the fan and then through the heat exchanger, before passing through the filter on the upper right.  All those particulates just passed through a heat exchanger, and it’s likely that some of them get stuck there until they are manually cleaned out. Particles sticking to a heat exchanger reduce its efficiency and depending on their chemical makeup, may damage the surface of the heat exchanger.  Now, placing the filter on the lower left poses a maintenance issue, but it shouldn’t negatively affect the operation of the fan or heat exchanger.  This is why having a separate filter on the fresh air intake before the HRV/ERV and leaving off that top right filter inside the unit, may be the best option in wildfire areas. 

One last point: although we’re not huge fans of completely “smart” homes due to the EMF they emit, if you travel a lot or have an HRV/ERV system installed in a vacation home, it is worth practicing operating it remotely (via an app).  In real emergencies, roads can be closed quickly and if you are not able to get home right away, it becomes the difference between being able to come “home” to a clean house and one that smell like smoke (because even carbon filters will not be able to adsorb VOCs for an extended or intense event).  

Any smoke (cigarette, wildfire, campfire, barbeque, industrial or traffic accidents, etc.) is very unhealthy, so we need to do our best to keep it out of our homes, even at the cost of not ventilating for the duration of the smoke event.  The particulate matter in smoke is especially dangerous for children and people with respiratory or cardiac conditions, because fine particulates can pass from the lungs to the bloodstream. The best line of defense against particulate matter is an airtight building envelope, which by extension means closing the intake dampers of ventilation systems.  Filters with a MERV 13 rating or higher, and activated carbon if possible, should be used in HRV or ERV systems and central air conditioning units so that these units can remove any smoke that gets in.  One or more portable air cleaners with a HEPA filter and carbon are also a very good addition for use in common rooms or bedrooms at night.  It all comes down to preparation…having the filters on hand (or better yet, already installed) and knowing how your unit works is worth a lot of clean air when the smoke suddenly appears around your home! 

Photo by Egor Vikhrev on Unsplash

Our Top Articles for Reference by Topic

Our Top Articles for Reference by Topic

We have published a lot of information for you on our website, so we understand it can be a lot to digest!  Here’s a shortlist of our top articles 

Mold and Mycotoxins

Mold Prevention

Mold Testing

Cleaning

Air Filtration

Humidity

New Home Search

Ventilation

Home Projects for Better Air Quality

HVAC

Disaster/Emergency Preparation

What Effects Do HVAC Systems Have on House Theatres and Entertainment Areas?

What Effects Do HVAC Systems Have on House Theatres and Entertainment Areas?

Home theatres and entertainment rooms are designed for family fun and relaxation. These rooms in your house are the most important to you when it comes to socializing, relaxing, and having fun. You and your loved ones can gather in these rooms to enjoy a performance of a film, play, or musical.

The entertainment rooms are a part of the house that should be well cared for. These areas need to be cleaned regularly to keep them in top condition. Many people in the home often use them, so it is always crucial to keep them clean. HVAC systems are another option for keeping these rooms comfortable. A good HVAC system makes watching movies or listening to music more enjoyable.

What are House Theatres and Entertainment Areas?

A theatre room with state-of-the-art projection and sound equipment is specifically designed for watching films. The walls of such spaces are typically covered in movie posters and other film-related memorabilia. In addition, they provide relaxing seating options, so you can kick back and enjoy your favorite program or film.

An entertainment area, often adjacent to the living room or family room, keeps guests entertained during social gatherings such as birthdays and anniversaries. Putting in pool, arcade, or foosball tables will give people something to do while waiting for food or drinks. This will provide them with a fun activity while waiting for their dinner to be served.

What Is an HVAC System?

HVAC stands for heating, ventilation, and air conditioning. In homes, businesses, and even indoor stadiums, air conditioning and heating systems control the air temperature inside the building. HVAC systems come in a wide variety, but they all work similarly. Mechanical ventilation provides fresh outdoor air through the system.

HVAC systems often include air cleaners to prevent the spread of airborne pathogens such as bacteria, fungi, and viruses. A specialist in the field will visit your home to assess its readiness for HVAC installation. Dallas HVAC installation service is one of the experts who will find the best HVAC setup for your home. They can install a new HVAC system for your home or business and also provide the repair service. 

To ensure your new HVAC system is installed correctly, you should hire a professional with a wealth of knowledge and experience. Professional HVAC installers help clients determine which heating and cooling systems are right for them. They can help you determine which size unit suits your space and how big your ducts need to be.

How HVAC Systems Affect Home Theatres and Entertainment Areas

When you plan to install a home theatre or entertainment area, it is crucial to understand how the HVAC system will affect these areas. The most common problems that arise from inadequate HVAC systems include the following:

Temperature 

Most home theatre components are not made to work in extreme heat or cold and may malfunction if exposed to such conditions. If your heating and cooling system is not running correctly, the temperature inside your home could fluctuate wildly. Either of these extreme temperature conditions can destroy sensitive audio and electronic equipment.  The equipment itself produces heat, so that must be accounted for in the “load” of the system.

The quality of the sound delivered to a home theatre will be affected by the temperature of the HVAC system. When the air temperature in a room is too low, the sound quality suffers. If the temperature is too high, you'll hear crackling sounds. The optimal viewing temperature for a home theatre is between 68 and 72 degrees Fahrenheit (20 and 22 degrees Celsius).

In addition, if your home theatre or entertainment area is sized for a number of people that significantly exceeds the people living in the house, you’ll need to consider the “load” that the extra people place on the system, because they will increase the temperature, humidity and CO2 of the room(s).  Too high or low of a temperature will also make it hard to focus on the plot of the movie or TV show you're watching. With reliable HVAC installations, you should be able to keep the temperature comfortable.

Humidity 

Water vapor in the air is what is quantified when discussing humidity. It affects how your home theatre and entertainment areas function.

Home theatre systems are not designed to withstand the high levels of humidity found outdoors. When exposed to humidity, most indoor equipment rusts, corrodes, or otherwise breaks down. HVAC controls ventilation, heating, and air conditioning to maintain a healthy indoor climate.

A high humidity level can make it uncomfortable to spend time indoors. You may feel overheated and wet all the time. Humidity levels in your home theatre could be quite high. Extreme heat and humidity are bad for your hair and skin. When the air in your home is too dry, you may experience a chill, discomfort, and dry skin.

If you have a humidifier in your house, ensure it's set to keep humidity levels at 30-40% during winter. For most house theatres and entertainment areas, this range is ideal. In the summer, that percentage can reach fifty to sixty percent.

An HVAC system that incorporates both a humidifier and a dehumidifier is the most efficient way to control moisture in a home. No matter the season, you can maintain optimal humidity levels in your home theatres and entertainment areas with HVAC installations.

Airflow

Airflow can affect how well you hear the dialogue in movies and TV shows and how you can listen to sound effects. It also affects the clarity of your surrounding system.

The lack of proper airflow is one of the biggest problems facing people who want to set up an effective home theatre system in their homes today. 

Poor airflow can lead to condensation on the walls and windows in your house theatre. This will cause mold growth and damage your furniture or other items within the space. Mold can grow inside the space and damage appliances.

Poor ventilation from the outdoors will allow CO2 levels to rise within the space, making everyone feel drowsy and irritable, the opposite of the environment you’re planning!  Without proper ventilation, microbial contaminants can also increase as people in close proximity exhale, laugh, cough or sniffle.   It’s critical to make sure that adequate ventilation is provided to keep everyone healthy!  Adding an air sanitizer device like the Whole Home Polar Ionizer or Air Angel will work to keep all the air fresh and clean in these spaces. 

HVAC systems can help maintain constant airflow throughout your home, keeping the temperature tolerable for those inside. The HVAC system uses ducts to distribute the conditioned air to different rooms in your home and especially entertainment areas. 

What Makes a Good Home Theatre and Entertainment Area?

Home theatres or entertainment rooms are more than just couches and speakers. It's a place to take a break from the stress of everyday life with your loved ones and friends. To make the area more fun and friendlier for anybody who visits, you'd probably want to improve it a little.

Ensure the room has enough seating for all those watching shows or movies. With a well-functioning heating, ventilation, and air conditioning system (HVAC), your guests can enjoy the show in comfort.

Installing an appropriate HVAC system should be a top priority. It will keep dust off your electronics, extending their life and ensuring they function properly. It will also keep your home at a temperature that will allow you to watch comfortably.  If you already have a central HVAC system, you may want to consider adding an additional unit for these entertainment areas, like a mini-split, to make sure your home theatre HVAC system maintains a consistent temperature, humidity and airflow.

Conclusion

Heating, ventilation, and air conditioning (HVAC) systems for a home theatre have unique design parameters that must be strictly adhered to for the best possible viewing environment for the audience. The system must be efficient and silent for the viewing experience to be satisfying. Creating a comfortable environment for watching movies or TV shows at home requires careful planning of the HVAC installations.  With all these things in mind, choose an HVAC system that keeps your home and entertainment areas safe and comfortable.

Guest post by Daniel Martin

Getting rid of the ICK: Mold in the Shower

Getting rid of the ICK: Mold in the Shower

Mold growth in the shower seems to me like cockroaches in a house: even luxury homes sometimes have problems with each, and sometimes it takes a number of attempts to find a non-toxic solution for them!   The shower just happens to be the ideal place for mold to grow (moisture, food, air and heat are all applied daily!), so keeping the shower from looking like a petri dish can be challenging.  Let us help you with this problem!

Since we know, wittingly or unwittingly, how to grow mold, we can look at its life source requirements and see if we can eliminate one or more to get a mold-free shower.

Moisture:  You would think that taking the “wet” out of a shower is impossible.  Of course, the shower will often be wet, but the important bit is that it’s not continually wet or wet for long periods.  There are various ways to dry it out after showering; check to see if there are any that you haven’t tried! 

  • Make the surfaces hydrophobic:  Hydro-what?  Hydrophobic is the characteristic of products like Rain-X: they repel water instead of absorbing them, so that water drops roll right off.  The active ingredient in Rain-X is Polydimethylsiloxane (PDMS), which is rated a “1” on scale of 1-10 by the Environmental Working Group (meaning it’s of very low toxicity).  In fact, here’s a tip that has worked well for me: after thoroughly cleaning your shower as well as you can (see next section), give all the surfaces, glass and otherwise, with a coat or two of Rain-X to make the water slide right off.

  • Squeegee: This tool, normally in the hands of a window-washer, is also useful for removing water from flat surfaces in the shower.  It can work somewhat on tile if the tiles are large and flat, but it works on glass even better.

  • Drain: Obviously, the water has to have somewhere to go.  If your drain is not working well, you can enlist the help of a plumber.  While the plumber is involved, inquire whether the venting of the drain is adequate (if a vent is too distant or non-existent, the drain does not work well and can cause mold build-up).  If the slope of the shower pan leaves puddles in the floor, it might be prudent to think about replacing or remodeling the shower, because continually wet floors are not only unsanitary, they’re unsafe!

Food: Molds can dine on just about anything, and dead skin cells and even bodywash and hair shampoo are on the menu.  That’s why regular cleaning can break the mold chain even if the other “links” like moisture, air and heat are present.  Find a non-abrasive sponge or brush to avoid damage, and go to town with a non-toxic cleaner:

  • TotalClean is our odorless powerhouse cleaner that can be used on any surface

  • Earth Clean is especially good as a degreaser if you have buildup of waxy products (citrus scent)

  • Force of Nature is a method of making electrolyzed water, which is a completely safe and natural disinfectant that can be used for hand sanitizing and cleaning all areas in your home that can tolerate water!  They have a line of reusable bottles and travel-size sprays that are great for the environment.

  • Vinegar-based cleaners also work, however make sure that they are safe for your shower surface first (for example, they should never be used on travertine or marble, both of which are a type of limestone that can be damaged by acids). 

Air: Of course, you can’t eliminate air from your bathroom, and some molds are even anaerobic anyway (meaning they can survive on little to no air!).  What’s best is if you can change out the air as much as possible, sweeping away excess humidity and mold spores with it.  This is what a good bathroom exhaust fan is for: get the air moving!  Professional restoration companies do the same when they bring in big blowers: air movement speeds up the drying process because it promotes evaporation of water from all the surfaces.  Check out our article on how to check if the size and venting arrangement of your bathroom exhaust fan is optimal.  Getting members of your household to use it is another feat, however this can be automatic if you have an electrician wire the switches together so that the vent always comes on with the light.  Also, here’s another way to “condition” the air in your bathroom to avoid mold:  use a Germ Defender 24/7.   The ions created by the Germ Defender not only destroy mold and its spores in the air and on surfaces, it also sanitizes surfaces after they’ve been contaminated by the dreaded toilet plume.  

Heat:  Anyone who’s cleaned out a refrigerator knows that heat is not a pre-requisite for mold to grow!   However, it certainly makes a more hospitable environment for many molds to flourish.  Using your bathroom exhaust vent after showering  certainly helps reduce moist heat in the air.  

There are also many products worth mentioning that can keep your shower cleaner for longer.  

  • That pink slime that forms around your drains and shower corners can also populate the shower head, and it’s not good!  It’s actually caused by the bacteria Serratia marcescens, and can cause urinary and respiratory tract infections, which are especially problematic for people with immune problems. (Not So Pretty in Pink: What Is That Pink Slime in My Bathroom?)  There are other types of harmful bacteria in there as well, such as NTM (nontuberculosis mycobacteria).  Soaking your showerhead to clean it does not fully resolve the problem, because it does not dry out. If you can’t seem to get rid of it from the shower spray head, swap it out with one of these:

    • Shower Clear Shower Heads ($299-319) are made of brass (a naturally anti-microbial material) and are made to open fully to dry out between uses. 

    • This showerhead by Niagara ($28) features a removable faceplate that will also allow the showerhead to dry between uses.

    • AquaDance Antimicrobial has antimicrobial rubber tips that also prevent minerals from clogging the spray jets.  (It uses the material Microban, which does contain quaternary ammonium compounds or “quats”, however).  

  • Thankfully, there are several good changes happening in the shower curtain market.  For one, PVC shower curtains are being phased out and replaced with PEVA or EVA.  Polyvinyl chloride, or PVC for short, is that plastic with the strong smell that emits toxic VOCs which can disrupt hormones, liver and kidneys, and your nervous system.  EVA (ethylene vinyl acetate) is a safer alternative to PVC, but some EVA contains formamide.  Formamide is used to make the foam soft, but it’s considered to be carcinogenic and a developmental toxin that can be absorbed through the skin. If you’re considering purchasing one of these doors made from EVA, it’s best to contact the manufacturer to ask if their product contains formamide. (hellonaturalliving.com)  

    • Sustainable Jungle also gives many organic and sustainable options to plastic shower curtains!  

    • Check out how I used TotalClean, our non-toxic all purpose cleaner, to clean the pink stains off the hem of my shower curtain.

  • And finally, what about your washcloth?  Experts say it’s a good idea to use a new one everyday, or at least several times a week.  Since it’s usually hanging in the moist shower, washcloths and scrubbies take a long time to dry, allowing microbes to grow and establish in the fibers.   

Since bathrooms are among everyone’s least favorite rooms to clean, and showers and toilets certainly also near the bottom, I’m liking the concept of wetrooms more and more.  Wetrooms are waterproofed bathrooms (at least all of the floor and some distance up the walls) that can be wetted and cleaned all in one go.  If you can’t do that, at least make your cleaning tools easy to use and accessible:

  • This Turbo Handheld Sprayer by Clorox ($50) eliminates the tiring pump, pump, pump of handsprayers.  Used with non-toxic cleaners like we suggested above, this could be a game-changer!  We don’t recommend the Clorox Turbo (or Turbo Pro) however, because it uses alkyl dimethyl benzyl ammonium chlorides, which can have asthma, respiratory, reproductive and developmental effects according to the Environmental Working Group.

  • E-Cloths Shower Cleaning Kit ($15) requires only water to have a sparkling shower.  Once you’ve cleaned it, use these two cloths on a regular basis (with no chemicals) to keep it clean.

  • The shower squeegee is a good way to remove water from the glass surfaces, but what about all the corners, curves and floor area?  If you thought about this before designing your bathroom, you might install an Airmada Air-Jet Shower Drying System.  It directs compressed air through special nozzles on the walls and ceiling of your shower, and can operate on a timer so that without your effort, water is removed from the equation and mold doesn’t have a chance to grow.  Another perk is that everyone can walk into a dry bathroom, no matter how many people have showered before you.  Now that is a great use of technology!

Photo by Curology on Unsplash

You don’t have to tell me (I can see/feel the humidity!)

You don’t have to tell me (I can see/feel the humidity!)

Although we like to measure to be sure and humidity sensors are easy, cheap ways to verify, there are signs all around us when the humidity is too high.   

Here are a few examples with the explanation why: 

  • That musty smell, of course:  Unfortunately, that smell is the telltale sign of mold, and is actually the microbial Volatile Organic Compounds (mVOCs) that molds produce.  To find out more about mVOCs, check out our detailed article

  • Doors and wooden windows that “stick” in their frames: Wood absorbs water from the air, causing it to swell, so closely-fitted wooden furniture like doors, window frames and even cabinets and drawers can “stick”.  When the interior and exterior “weather” dries out, they can work just fine again!

  • Condensation on the inside of windows:  To understand why condensation happens, it’s best to start at the concept of dew points.  You can read more about it in our article here, but the basic concept is that every temperature and pressure of air can hold a certain amount of water vapor.  Warmer air holds more water vapor than colder air.  When warm air hits a cold surface, the water vapor will condense or “drop out” of the air onto the surface–just like a glass of iced tea sweats on a warm day.  The occurrence of windows sweating on the inside will happen when warm, humid air hits a cold window frame (this happens most often with aluminum windows), and if it persists, can be a habitat for mold.

  • Salt or seasonings that clump and stick together:  This may not happen as much nowadays with the proliferation of “preservatives” used in our foods.  However back in 1911 (before air conditioning was widespread), table salt tended to cake in the container when it was rainy or muggy, because salt is hygroscopic.  This means that it has a tendency to absorb moisture, even from the air, and clump together.   Morton started to advertise using the slogan “When it rains, it pours” because they added magnesium carbonate (an anti-caking agent) to their salt, which allowed it to pour freely even in humid weather. (Today, the company uses calcium silicate.) (What’s The Weather Lore Behind The Morton Salt Slogan?)  Here’s a tip: if you are having a bit of a humid spell in your home, or even going camping, you can add a pinch of rice to the salt shaker to get it flowing.  Just like immersing a wet cell phone in a bag of rice, the rice will absorb the moisture out of the salt and allow it to flow through the holes of the shaker again.

  • Household electronics having issues--especially battery ones:  Electronics and water rarely go together, and they can get finicky when the humidity starts to creep up. Battery-operated appliances have contacts that can easily corrode.  If that happens, of course try to dry out the air, and you can use fine sandpaper on the contacts to remove corrosion.

  • Proliferation of insects and pests: Pests like fleas, ants and cockroaches love high humidity: it’s the perfect environment for them to lay eggs and develop into adults. Warm temperatures combined with high humidity is ideal for fleas, and they can rapidly multiply in these conditions. (Do Fleas Thrive in the Rain?)

  • Mildew on wooden furniture: If you have wooden furniture on a humid porch, you may have already figured out that it needs regular wipedowns and maintenance to keep it from growing “fur”!  The same thing can happen inside when it becomes too humid, because the surface of wood is very hospitable to catching dust that can feed mold.  

If you notice any of these signs, it’s time to take action before mold sets in!  The first thing we can recommend is air circulation and ventilation (outside weather permitting), which can change the indoor climate from room to room.  Air conditioners are not automatically “dehumidifiers”, so if your air conditioner does not have a dehumidification mode, you may need to add a standalone dehumidifier.  Sealing the boundaries of the home is really important to prevent intrusion of exterior humidity.  Finally, our Germ Defender, Upgraded Air Angel Mobile and Whole Home Polar Ionizer can help by sending out millions of ions to kill mold spores in the air and on surfaces. The takeaway is that after a while, you can learn to read the signs of high humidity without even glancing at an air quality monitor, and make adjustments accordingly!

Hosting Responsibly

Hosting Responsibly

‘Tis the season for gathering together for celebrations!  More than a few years ago, “hosting responsibly” might be taken to mean monitoring alcohol consumption and driving.  Now, it also means providing good air quality where participants don’t need to worry about breathing in germs.  What a difference a few years (and a pandemic) makes!

In November 2022, in grocery stores, malls, airports and airplanes, masks and distancing are no longer mandatory.  There are also no mandatory distinctions between vaccinated and unvaccinated people.  I realize that although most places present as pre-pandemic, these norms can change at any time, and many people are still concerned about virus transmission and their health.  This elephant has been dressed up well, but he’s not going away, so it’s best to acknowledge him!

Letting your guests know about your preparations means letting them know you care, and make them even more eager to attend!  How can we get started?  Here are some questions for the host:

Is your home or gathering place well-ventilated? 

Here are a couple ways to tell:

  1. Do odors persist for hours if you don’t do anything to abate them?  This might be a little tricky to answer, because it’s definitely a good idea to use your kitchen exhaust fan while cooking, but if you clean up the food bits, wake up and can still smell last night’s dinner, there is likely a problem.
  2. Is the carbon dioxide level in your home below 1000ppm?  It’s really helpful (and surprising) to use a portable CO2 meter in your home and elsewhere.  It let me know that my house (built 1982 with building paper as the air barrier) is quite leaky at about 520-550 ppm CO2, but on the other hand, my parents’ house (renovated 2020) seems to be quite tight and in need of more ventilation (1500ppm)!  The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), which is the dominant organization in establishing proper building ventilation rates in the US,  is hesitant to use CO2 levels as an indication of proper ventilation in homes and businesses because of lack of research and a number of variables.  However it does state in a white paper on indoor CO2 levels
  • Indoor CO2 concentrations do not provide an overall indication of IAQ, but they can be a useful tool in IAQ assessments if users understand the limitations in these applications.
  • All else being equal, higher CO2 concentrations correspond to lower outdoor air ventilation rates and the potential for an increased risk of airborne transmission.
  • Rather than using indoor CO2 concentration as an indicator of desired ventilation rates, several analyses of airborne infection risk have used CO2 as an indicator of the “rebreathed fraction” of indoor air (the fraction of inhaled air that was exhaled by someone else in the space). (Yuck!)

So, although ASHRAE did not set these values (contrary to misquotes), the generally accepted values are consistent with these:

Source: Washington State University Extension Energy Program

So, if you take a reading on your CO2 meter and find that the difference between the indoors and outdoors is less than 650 ppm (which is normally about 1000 ppm indoors), your ventilation is “acceptable”.  Above that level, your guests will have complaints of fatigue, loss of focus and concentration, and an uncomfortable ‘stuffy’ feeling in the air, all of which indicates you are not getting enough fresh air. (Kaiterra.com)  Keep in mind that with more guests, more ventilation is necessary to keep the CO2 level down!  You can crack windows to add more ventilation.

Do you have active air purification?  If so, let them know!  Just as businesses are proud to advertise that they use HypoAir products to keep their clientele safe, don’t hesitate to let your guests know if you are using active air sanitation like the Whole Home Polar Ionizer, Air Angel or Germ Defenders.  In addition, a fresh furnace filter in a higher MERV rating and/or use of a standalone HEPA filter also increase the air quality. 

How about making your gathering indoor-outdoor?  If you have a patio or yard, string lights and a firepit or chiminea make for a cozy, festive ambiance!  In addition, the opening of doors when guests enter or exit adds fresh-air ventilation to your indoor space. If you decide to light a fire in the fireplace, cracking a window will help the fire burn better with less chance of backdrafting smoke into the room.

Have you thought about food and beverage service?

If we had a throw-away mentality before COVID-19, unfortunately the pandemic has only made it worse.  Restaurants have embraced using disposable food trays, utensils and drinking glasses for sanitation, however I suspect it is now more for convenience.  According to this 2020 study, the SARS-CoV-2 virus can remain viable on inert surfaces, with varying lengths of time depending on the surface: four hours on copper, 24 hours on cardboard, 48 hours on stainless steel and up to 72 hours on plastic.  With this evidence showing that cardboard and plastic are not anti-viral, you don’t have to follow suit with everyone else regarding what you serve on.  Instead of having a large trashbin in the center of the party (although some garbage is inevitable for sure), why not fill one side of the sink with soapy water, or leave a basin with soapy water, in which to submerge dishes?  I’ve always enjoyed using real dishes over plastic or paper, so if your gathering is smaller than your collection of plates, it’s not taboo to use china and stainless steel. Marking drinking glasses with a marker or tag ensures that everyone keeps their own!  You could even DIY inexpensive beverage glasses with your guests’ names as favors.  If you decide to go with single serve drinks, cans or bottles are still best marked to avoid confusion.

What’s more important, though, is how you serve.  It’s wise to designate 1 or 2 people as “servers” who can add helpings to individual plates in order to reduce handling of the serving utensils.  If “seconds” are available, it’s best to use additional clean plates to avoid contamination.  Wrap utensils in individual napkins pre-party so that no one has to dig through a bin to get their own.  

Set containers of hand sanitizer throughout your space, and most importantly at the food and drink service area.  

Have you made sure the bathroom is clean and inviting?

  • Provide antibacterial soap and individual paper hand towels
  • If you have a bathroom vent, consider installing a switch protector or sign so that it stays on throughout the party to keep the bathroom air fresh(er!)
  • Instead of buying deodorizers that can add toxic chemicals and VOCs to the air, re-package some TotalClean in a pretty glass bottle and label “air freshener”--it really deodorizes well!

Will you have chemically sensitive guests?

Ask guests to notify you if they have chemical allergies, so you can keep it scent-free if necessary.   If you've ever had a smell irritate your nose or even cause a headache, you have a inkling of what Multiple Chemical Sensitivity (MCS) sufferers go through.

  • It’s hard to pass up candles and sprays in holiday scents, but try to do it for the sake of your friends!
  • It’s also wise to use unscented, natural products like TotalClean to get a thorough clean on all surfaces without any scent.
  • Ask other guests to abstain from using scented personal items like perfume and deodorants.

Less Coffee, More Fresh Air!

Less Coffee, More Fresh Air!

At some point in most peoples’ lives, fatigue is a fact of daily life.  We can chalk it up to too much work and not enough sleep, or poor quality sleep, or a virus that seems to be “going around”.  But what if it could be as simple as not enough fresh air?  Simple…yet sometimes not easy to fix, when opening the windows lets in more harmful air than good.  Let’s dig into this “simple” cause…

Different regulations regarding ventilation have been around for a long time, way longer than the American Society for Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) published its first Standard 62 for ventilation. The first, ANSI/ASHRAE Standard 62-1973, Standards for Natural and Mechanical Ventilation, presented minimum and recommended ventilation rates for 266 applications and became the basis for most state codes.(ASHRAE.org)

This standard has been revised several times since 1973, and the current standard calls for homes to “receive 0.35 air changes per hour  but not less than 15 cubic feet of air per minute (cfm) per person.” (epa.gov)  Why?  According to Britannica.com, Clean, dry air consists primarily of nitrogen and oxygen—78 percent and 21 percent respectively, by volume. Without any other contaminants such as carbon monoxide (from combustion) or radon (from the earth) entering a building, humans change the composition because we take in oxygen and breathe out carbon dioxide.  Our lungs can still rebreathe this air “safely” until it decreases below 19.5% (OSHA threshold for oxygen in atmosphere), but increaseing levels of carbon dioxide (CO2) may cause occupants to grow drowsy, get headaches, or function at lower activity levels.  (healthybuildingscience.com)  What’s the threshold of CO2?  

  • NIOSH (National Institute for Occupational Safety and Health): 1,000 ppm (parts per million in air) are a marker suggesting inadequate ventilation.  

  • ASHRAE recommends that carbon dioxide levels not exceed 700 ppm above outdoor ambient levels.   (Normal range for outdoor levels are typically in the 350-450 ppm range). 

  • OSHA (the Occupational Safety and Health Administration) limits carbon dioxide concentration in the workplace to 5,000 ppm for prolonged periods, and 35,000 ppm for 15 minutes.  

Taking the most conservative route, 1000 ppm is only 0.1%.  Wow, it doesn’t take a lot of CO2 to make stale air!  If this is the gold standard, why are we suffering in stale air?   The answer is that  many places in the US do not require building permits in order to build or renovate a home.  For this reason, it’s up to the homeowner to know what is needed and make sure it’s installed.  If the HVAC technician does not design fresh air into the system, and the homeowner does not know about the need for it, the home won’t have it and the air will be stale.  Case in point: my 1982 home in the country.  It cools, heats, and circulates stale air.  

Take this tweet from Andrej Karpathy and Elon Musk, who know a bit about technology: 

And then the public chimed in: a Stanford professor used to take CO2 measurements in a lecture hall before packing 100+ students in for 1.5 hours, because some halls did not have enough ventilation to sustain deep thought!  Then a restaurant worker began to think, oh, so that’s maybe why I got dizzy sometimes during peak hours of a restaurant?  And another: his son used to wake up crying but since increasing ventilation in his room, the child sleeps a lot more peacefully.  

So if you want to measure your air, lethargy, unclear thinking and headaches don’t have to be part of your day!  There are lots of CO2 monitors on the market, with most starting about $65-70.   This monitor by INKBIRDPLUS shows temperature, humidity and CO2, and also allows you to customize an alarm for different levels of CO2 (they recommend normal (400-700 ppm), warning (700-1500 ppm), and dangerous (1500-5000 ppm)).  

Can you imagine measuring the CO2 while sitting in a conference room or in a lecture hall?  With such technology at your fingertips, there’s no reason to be ashamed to say “I need a break”.   Your brain and body will thank you!

Photo by Call Me Fred on Unsplash

Getting the Basement Dried Out

Getting the Basement Dried Out

In our post on how the basement affects our whole home’s air quality, we discussed how mold and mildew form and are sustained in the basement.  Active water leaks (flowing down the walls and pooled on the floor) are not required to make the basement a musty place.  Here are some sources of moisture coming into the basement:

  • Concrete is not a moisture barrier on its own!  Water will permeate concrete walls and floors and simply evaporate, increasing humidity.  
  • Open or broken windows allow moist air from the outside to come in and upon encountering cool walls and surfaces in the basement, condensation will form or just increase relative humidity in the air.  
  • Air leaks around windows, entry doors, unsealed wall penetrations and penetrations into the first floor above allow air to come in, in an uncontrolled way. 

Ideally the basement is inside your building envelope, whether you decide to finish it or not.  This is because it can be a suitable place for mechanical systems like HVAC air handlers and furnaces, hot water heaters, and also for storage.  To house these systems, however, the basement needs to be dry, with good air quality.  We argue that the basement air quality needs to be as good as any other floor in the home, because it will mingle with the atmosphere of the rest of your home!  There will be small leaks in the basement ceiling that make it permeable to the rest of your home.

The way to control humidity is to control:

  • Water flow into the space,
  • Airflow into the space, and
  • Air circulation within the space.

Let’s tackle each problem individually.

Water flow into the basement

Water flowing down walls in streams and puddling on the floor is a major problem– in this case, it is like living above a lake!  It will be difficult to “dehumidify” the air when open water is present, because the water will be continually vaporizing into the air as fast as a dehumidifier can take it out.  Although many basements exist like this, walls and storage of home goods in such environments can accumulate mildew rapidly.  Painting on a “waterproofing coating” will usually just act as a band-aid, because the pressure behind the wall, forcing it into your basement (called hydrostatic pressure) will eventually break through the paint and even degrade the foundation if it’s not drained away properly using interior and/or exterior drains. (basement waterproofing)  It’s best to contract several reputable basement remediation contractors in order to get their recommendations and quotes on stopping the inflow of water.  

If the water is only causing dampness on the walls but not visible condensation, then it’s possible to allow the walls to continually “dry” to the inside by doing the following:

  • Cracks and damage to the walls need to be repaired first.
  • Install rigid foam board with a “perm” rating of 1 or greater.  This allows the moisture to move through the foam and dry out, but still insulate the basement for greater thermal comfort and avoid condensation on the cold wall. Keep the foam insulation up about an inch from the floor to allow any condensation to drain.  If desired, the walls can be framed with treated wood to hang drywall inside.  An excellent cutaway diagram of the installation can be found here (page 24). Below is a picture of rigid foam board insulation from the same document (page 32).
  • An alternative to applying rigid foam board is to paint concrete walls with a waterproofer such as UGL’s Extreme Latex Masonry Waterproofer.  This product has a perm rating of less than 1 (according to this manufacturer’s video), so it is vapor semi-impermeable, but it does not have any insulating properties, like the foam board, so the walls will still be cold to the touch and allow condensation if the air inside is too warm and humid.  
  • Use dehumidification to dry things out.  
  • Decrease relative humidity by increasing the temperature slightly (the dehumidifier may raise the temperature a few degrees, but if not, you can add a small heater).
  • Increase circulation with fans so that air is evenly dehumidified.

Some notes on Vapor Permeability: A material’s permeability is measured in units called perms, which assess how much moisture can pass through a barrier in a 24-hour period according to standardized industry tests. Materials are separated into four general classes based on their permeance:

  • Vapor impermeable: 0.1 perms or less

  • Vapor semi-impermeable: 1.0 perms or less and greater than 0.1 perm

  • Vapor semi-permeable: 10 perms or less and greater than 1.0 perm

  • Vapor permeable: greater than 10 perms

Materials with lower perm ratings are better at stopping the movement of water vapor. If the perm rating is low enough, the material is a vapor retarder. If it’s really low, it is a vapor barrier. (Barricade Building Products)


Air flow into the basement

Sometimes it’s difficult to know what to do: open the windows or not?  Many reputable websites advocate “airing out the basement” (such as thisoldhouse.com), and we at HypoAir always advocate for ventilation to dilute stale air, but here’s the problem: when you don’t know the dewpoint of the air coming in or leaking in, it can cause major mold problems in the basement!  Dewpoint is the controlling factor of whether fresh-air ventilation alone can prevent mold.  As we wrote in another post

The best way to explain this (per this great article) is to find out the dewpoints of the indoor and outdoor conditions.  If the outdoor dewpoint is lower, you can ventilate with fresh air and still dry out your house!  For example on July 26, 2002, here are the conditions inside and outside my house (a relatively “dry” hot day outside!):

Inside: 76 deg F, 67% humidity = 63 deg F dewpoint (check out this easy calculator on dpcalc.org)

Outside: 91 deg F, 54% humidity = 72 deg F dewpoint (dpcalc.org)

See, in this case even though the relative humidity outdoors is lower, if I open my windows, that hot air coming inside would be cooled and relative humidity would increase, working against my humidity goals.

In the case of the basement, the air temperature could easily be lower, like 68 deg F.  If you cool 91 deg air with 54% relative humidity down to 68 degrees, water vapor in the air is going to condense, making your humidity problem worse!   Therefore we want to control all sources of air inflow and only let in drier air for ventilation.  Here is a diagram showing the problem of leaving windows open, and how to solve it:

source: bayareaunderpinning.com

  1. Close windows, block off vents, and seal the window frames with caulk, spray foam or adhesive tape made for the purpose.  Make sure exterior doors have weatherstripping. 

  2. Check for unsealed penetrations in the walls.  If you have to use a flashlight and look behind appliances such as water heaters or furnaces, be prepared with gloves and pest spray to get it done!  The best sealant for wall penetrations in the basement would be sprayfoam, because it conforms to the shape of the hole.  You may want to shove in a wad of steel wool first, because it deters animals from chewing through the foam and re-opening the hole.

  3. Look up–check the ceiling.  If there is a false ceiling in the basement, you may need to remove ceiling tiles and/or insulation in order to see the underside of the subfloor, but this is where big problems can hide!  The photo below shows the underside of a tub.  Plumbers often cut BIG holes to make their jobs easier, but this can really hurt air quality when these holes let lots of moldy air up (if there’s a negative pressure generated in the space above, this is easily done with a bathroom vent fan), or warm air down (if you are using any type of air extractor in the basement).  It’s best to seal big holes like this one by framing in a box to the surrounding joists, and using spray foam to seal the resulting cracks and holes.  It’s not recommended to insulate the ceiling of the basement (see this definitive guide, page 25) to try to separate it from the rest of the building, as this will only cause more mold problems in the basement.

Source: energyvanguard.com

Where does fresh-air ventilation come from if you’ve sealed outside access off?  According to energyvanguard.com, there are 6 ways to supply fresh air to your home in a humid climate, and for the purpose of a basement that is outside the building envelope, only one makes sense since you’re probably already using a dehumidifier: a fresh air fan that purposely pulls in outside air.  Here are some options to make it happen: 

  • Air King’s QUFresh, 120 cfm, $413 at ecomfort.com
  • Broan’s FreshIn, 180 cfm, $239 at sylvane.com
  • ACInfinity’s AIRTITAN T3 6-In Ventilation Fan, 120 cfm, $69.99, sylvane.com

The AirTitan is a good option where windows are available, because it can be retrofitted to fit in an open window more easily than the other ducted models.  Each of these models have temperature and humidity settings you can adjust so that the fan will only operate when it meets those specifications.  These may need to be set higher in hot and humid climates, but the dehumidifier should be able to handle moderate inflows of fresh air.  When you control the airflow into the basement, you can control the humidity.

And finally, Air Circulation Within the Space

Your basement may be one wide-open area, or several rooms separated by walls and doors, but in each case, good air quality requires that air is moving constantly.  Here are some tips to get the best circulation:

  • Leave doors within the basement open as much as possible
  • Leave dedicated fans running all the time.  Floor fans work great for this purpose, as you can move them around/adjust direction and speeds until you find the optimum circulation.
  • Move boxes and furnishings away from walls and up from floors so that air will circulate to dry them.  Don’t stack boxes to the ceiling.  Separate boxes by several inches to get air moving between them. 
  • Remember, the less absorbent material stored in a non-conditioned space, the better (less cardboard, less fabric, and less wood).

I hope these suggestions help you to dry out your basement so that your whole-house air quality improves, from the ground up!

How to keep MILDEW out of your CLOSET

How to keep MILDEW out of your CLOSET

Closet doors are meant to keep closed, right?  Unless you are Martha Stewart, it’s likely your closet doors don’t stay open very long–if they close to begin with!  The problem comes when humidity and closed doors combine for a stinky problem: mildew and mold.

We sometimes think that mildew is a less toxic form of mold, but it is still mold nonetheless.  Mildew is a subclass of mold that exhibits a white or gray, flat, powdery growth, while the rest of the molds can get more fuzzy and colorful.  Both release spores, but unlike other molds, mildew doesn’t penetrate surfaces and grow into the materials it lands on (though it can still cause cosmetic damage). Instead, it grows on top of flat surfaces and often collects in places like cardboard boxes or your vintage leather jacket in the closet.  Not good!  (What is Mildew, Really? The Difference Between Mold and Mildew)

Since we know that mildew is a form of mold, we know that it needs several things to grow: a food source (ie. leather, clothing, and dust in general), moisture (even excess humidity) and air (although stagnant air is best because lack of circulation keeps humidity at surfaces high).  So, the best ways to keep mildew at bay in closets is to:

  • Clean out the dust and seal off any sources of dust

  • Keep the humidity down and ventilate

  • Store items for longevity and air circulation 

How the heck does dust get in the closet when the door’s closed?

Incredibly, some closets are like dust magnets.  If your closet is part of a tiled or vinyl floor area, dust bunnies can usually slide right under the door due to the slick surface.  If you have any penetrations in the ceiling (like a light bulb), then your closet may be part of a hidden circulation system where the framing in your walls conducts air currents throughout your home.  For example, closets near bathrooms may unknowingly supply air to the bathroom exhaust fan, if the fan’s ductwork is not sealed well in the attic or the lightbulb box is not sealed to the ceiling.  Then there are the closets that double as storage areas and HVAC equipment rooms.  If the HVAC unit is not sealed well, it just pulls air from the surrounding home into your closet.

  1. Seal

The way to keep out the dust is to seal these small air passages: at the ceiling, remove the light fixture and either use a caulk gun (less messy) or a spray foam can with a straw (very messy, be sure to cover everything!)  to seal the electrical box to the drywall.  If the closet is an upper story, you may be able to do it from above in the attic with less mess, and sealing all the ceiling penetrations may help with dust house-wide.  If you notice a lot of dust forming on the floor, it may be worth caulking the baseboards to the floor (if it’s tile or solid-surface) to seal that up as well.

  1. Clean 

Next, removing the dust should be part of a larger goal to store items properly so that cleaning will be easier and mildew will be less likely to form.  You’ll need a HEPA vacuum with brush attachments, and various storage containers.  If possible, empty the closet.  This will allow you to see all the walls and floor to see if there are any water leaks coming in that could be causing the mildew.  If not, use the vacuum to clean ALL the surfaces so you can get a fresh clean start!

It’s a great time to wash clothing and purge any items that you don’t use anymore by donating them.  Clean clothing is less likely to smell and deteriorate from body sweat and dust mites as well.

Stop right there!  If you had mildew in your closet before, you need to make ventilation changes to stop it from recurring.

  1. Ventilate/dehumidify

Mildew sometimes forms in closets because of lack of ventilation.  The great thing about moving air is that it lowers the moisture content of surfaces that come in contact with it.  If the air is not moving, the moisture content of surfaces tends to equalize with the stagnant air, and over time, mold is able to grow.  Also, if your closet is located on the corner or north side of a building, the insulation in the wall may not be sufficient to prevent warm house air from causing condensation on the cold wall.   Here are some tips:

  1. Refill the closet

Ok, you can start restocking the closet but remember this important point: maintain space between items so that air can freely circulate!  Don’t overstuff or compact items against the wall, either.  Wire shelving is great for maintaining circulation from top to bottom, too.

Storage containers matter, too–if possible, don’t use cardboard boxes because cardboard holds moisture, and it’s a favorite food for all kinds of pests: mold, roaches and silverfish like to eat it, and mice like to use it for bedding!  If you’ve cleaned and dried your clothing and excess bedding, packing them in clear storage bins is ideal so that you can easily see what’s in each.  For wool and moth-prone items, you can add cedar blocks to the bin to keep pests out.  These garment bags are great to keep dust off hanging clothes.

After mildew remediation, it’s important to check on your closet at least every few weeks until you’re sure that the changes are producing their intended effect: the ability to close the closet door without mildew taking root!

Photo by Annie Spratt on Unsplash

No-Demo Renos for Air Quality

No-Demo Renos for Air Quality

As of 2024, home renovation is still very popular in the US, but there’s been some interesting developments, such as “no demo reno”.  Eliminating demolition usually means less cost and less time--two very important commodities in renovation!  I’m waiting for designers to take it a step further to challenge themselves to redesign for air quality on a budget, to be judged by air quality experts.  Of course, you can spend thousands of dollars on the latest HVAC and purification systems, but you can also make a big impact with a lot less.  That’s what I’m talking about!

Whether you live in a sealed upper-storey apartment using forced air all the time or only use natural ventilation via windows and doors, furniture placement can affect the airflow and thus the air quality in your home.  According to a 2022 study, furniture layout is a key factor that affects the direction of airflow in a building. Different furniture heights can block or trap natural air or lower the direction of the airflow, thereby producing microscale positive or negative pressure.  It evaluated a naturally-ventilated school in Thailand which was located in a city which was plagued by high PM2.5 every January and May, mostly due to agricultural burning, and wind-blown dust. Under natural ventilation conditions, the direction of PM 2.5 distribution in the classroom was the same as that of the natural air. The air velocity and PM 2.5 concentration in the classroom were correlated positively, whereas the velocity increased, with the increasing concentration of PM 2.5. Adjusting the furniture layout of the classroom, as well as the size of the openings, affected the airflow and distribution of PM 2.5 within the classroom. 

Another study evaluated the pollution level of new furniture (VOCs).  Just by rearranging the furniture in an office with a forced-air system, there was a notable difference between the best and the worst ventilation effectiveness without any changes in the ventilation.  The key learning points were to: 

1) always try to place the pollution source (new furniture) as far away from your usual breathing zone (like sitting at the desk) as possible and, 

2) try to sit in the upflow field of the airflow.

If you aren’t trying to off-gas any new furniture, here are the rules that enable your HVAC to work at its optimum (How Furniture Placement Affects Your HVAC):

  • Make sure the furniture is not blocking any registers or vents.

  • Place furniture away from walls so that adequate airflow behind the furniture can prevent formation of mildew.  This happens when there is not enough air circulation (stagnation) to prevent humidity from saturating surfaces.  For more on how you can avoid mildew with better air circulation/ventilation, check out our article here.

  • Don’t block any windows or doors when placing large pieces such as couches or dressers near them

If you do need to obstruct a vent, try to use a deflector on the register so that air flow is directed to an open area.  They come in a number of shapes and sizes, even adjustable, to match your register/grille and desired direction of airflow.

How to visualize airflow in your space

There are professional engineering programs that can help “see” airflow, but they take quite a bit of measuring and input to get a simulation.  On the simple side, you can use the following to “see” airflow, and adjusting furniture position, window openings, vent positions and fan positions and speeds to modify air currents.

  • A helium balloon that has neutral buoyancy that “hangs” in the air below the ceiling will move with air currents (you can tie or tape a small weight onto it to adjust height).

  • A bowl of warm water with a chunk of dry ice (frozen CO2) will give off fog that moves with air currents (just be careful to use thick gloves when handling!)

  • Old-fashioned soap bubbles (you can make a wand by twisting a paperclip into a loop and use dish detergent and water) blown straight up into the air will tend to move in the direction of other air currents.

  • Candle flames/smoke may also show the direction of air currents.

  • Tape streamers or tissue paper in doorways to see which direction the air flows (tinsel also works).

  • Anemometers are fun devices to play around with, but unfortunately they usually only work very close to a vent or fan; they don’t move with minimal airflows. 

Windows: Don’t forget to pull back curtains or remove them altogether if you are using natural ventilation, because blocking windows with curtains blocks airflow and light!  Curtains are usually necessary for privacy, but you might consider trying sheer or loosely-woven curtains or a decorative fabric screen placed a foot or two inside the window, for more airflow.  If you want to open windows without letting in pollen or air pollution, check out our Nanofiber PureAir Window Screens and Window Ventilation Filters.

Fans: Portable fans can set atop furniture or even be hung on the wall to increase airflow.  Take the time to clean your ceiling fans and make sure they are running in the right direction (clockwise in the heating season and counter-clockwise for the cooling season).  

Even if you’ve lived in a space for a long time and think you have tried “every possible arrangement” of furniture, the act of rearranging furniture every so often is not futile for the following reasons (Rearranging Furniture Could Help You Use Space More Effectively and Give You a Mental Boost):

  • Moving furniture will expose dirt, dust and allergens so that you can clean under it, improving indoor air quality.

  • Moving it may force you to remove or store clutter that also collects dust

  • Moving furniture could expose other air quality problems like hidden leaks or mildew, pet stains or pest infestations

Better furniture arrangement can help you to feel less stuffy and more energetic, even if the airflow changes are minute.  Just a few last tips before you get busy redesigning a room: 

  • remember to use a measuring tape first before trying to move heavy or large furniture to a new spot! 

  • Have your cleaning supplies at the ready to vacuum up dust, cobwebs, pet hair, etc..

  • Call on your friends not only to help with the moving, but also to lend ideas.  

  • If you don't have plants, consider adding a few strategic plants as natural air purifiers (and a pop of color!)

  • Plugging in a small air purifier with a fan like the  Germ Defender or Upgraded Air Angel Mobile will freshen the air and add airflow on a micro scale.

Photo by Nathan Fertig on Unsplash

Help! My basement has flooded!

Help!  My basement has flooded!

While some are suffering in the US from droughts, others are walking ankle-deep through water in their basement.  Unfortunately water in the basement is different from other areas of the home because 1) it doesn’t easily drain away because you can’t just “cut a hole in the floor”, 2) being below ground level means you may be already fighting ground water problems that are just looking for ways to intrude, 3) ventilation is typically sub-par, meaning that drying it out takes a lot of power equipment, not just opening windows!  It can be very daunting for a homeowner with limited renovation funds, but don’t turn a blind eye on a flooded basement, because the mold that ensues can quickly affect the rest of your home.

Call for help–immediately!

If your area was hit by a storm, chances are that a lot of other people have the same problem you do–they need restoration professionals too!  However, you can’t afford to wait 3 days after the water hits the floor, because mold can start to take root in your walls and furnishings only 48 hours after they get wet.  Here are some ideas for resources:

  • Family (of course!)

  • Neighbors (they probably need help too)

  • If your state officials have declared a state of emergency, the Federal Emergency Management Agency (FEMA) may be able to help.

  • The American Red Cross has disaster assistance services.

  • Local churches often set up assistance centers for homeowners.

  • Workers for hire often gather at local home improvement stores, but be wary of giving anyone without a contractor’s license a job in your home for safety and insurance reasons.

What needs to be done?  If you don’t hire a professional restoration service, you can use the following as a guide.

  1. First of all, don’t walk through any standing water if there’s a chance that electrical appliances sitting in it may be energized.  This presents a big problem if the circuit breakers for the basement are IN the basement, but do your best to disconnect power before walking through the water.

  2. If your basement sustained a sewage backup as part of the flood event, be very cautious about contacting/working in the dirty water, as open wounds can become infected by microbes from the sewage.  In any case you’ll want waterproof boots, goggles and gloves at the minimum!

  3. Open windows to the outside if it is low humidity outside–this will help with the drying process.

  4. Standing water has to go.  Small amounts of water can be picked up by a wet-dry vac (make sure you have the right type of filter installed for wet suction), but if you have a lot more water, you’re going to want to find a dewatering pump that doesn’t need to be emptied; it pumps the water outside via a hose (away from the house!).  

  5. Silt or mud may have accumulated on hard floors from floodwaters, making it slippery.   If you have any snow shovels or flat shovels and buckets, these are the tools you need to remove it. 

  6. Wet carpeting and padding has to go; it is very difficult to dry and successfully salvage large areas of carpeting, except for area rugs, which must be professionally cleaned as soon as possible (consider cleaning cost versus value).  From this point on, all wet materials removed from the basement should be piled near the road where waste management can pick them up, or if you will have to haul them yourself, on a trailer outside.

  7. Wet upholstered furniture and bedding (mattresses and boxsprings) have to go, because like carpet, it is too difficult to get the center of the upholstery completely dry. 

  8. If you have any solid wood furniture without upholstery, you can move it outside for drying and wiping down if the weather is good.  Use rags and a cleaner like TotalClean to remove dirt and let them dry in the sun.

  9. Walls: Remove all drywall and insulation below the floodline, as well as 2-4 feet up the wall.  This is because the drywall wicks up water, and the insulation behind it will be wet also.  The goal is to get the studs and all of the wall cavity dry.  If you have built-in cabinetry that has gotten wet (even an inch or two), we’re very sorry to inform you that it has to be ripped out, because there’s no way to completely dry the back of the cabinet.  🙁

  10. Once the wet materials have been removed,, and throw all your tools at the remaining moisture: we’re talking fans, heaters and dehumidifiers, as each will do a different role in drying.  Fans improve air circulation.  If the temperature is cool, add a heater so that relative humidity will go down and speed up drying more.  Dehumidifiers also lower the relative humidity.  According to Cleaning and Maintenance Management, a property restoration company, here is how we can understand the drying process: “Low relative humidity (RH) is necessary for drying, as moisture in materials and air seek equilibrium. The lower the RH of the air, the quicker the wet materials will give up their moisture to become equal with the moisture in the air. …Air movement is the workhorse of drying by displacing high RH at the surface of wet materials with lower RH. Circulation airflow moves wet air to our dehumidification systems (either mechanical or ventilation), allowing us to manage RH and water vapor in the air.” 

  11. If you find that musty odors have started to form, you can clear particulates from the air using a large HEPA filter with activated carbon such as our Cleanroom WindPRO 650, or if you don’t have the budget, make a Box Fan Air Cleaner, to which you can also add activated carbon to remove odors. 

  12. Plugging in  Germ Defenders and Upgraded Air Angel Mobile units will assist in deterring mold growth around the basement.

  13. Once everything is dry, it’s good to invite an experienced waterproofing/foundation company to inspect your basement to see if there’s anything that can be repaired or upgraded so that you (hopefully) will not have to go through such an ordeal again.  We have several articles you can use to educate yourself on waterproofing techniques: Getting the Basement Dried Out and a cautionary article: Waterproof Wall Coatings: Should You Use Them in Your Basement?  so that you will have background for a conversation with professionals on their suggested course of action.

Since “an ounce of prevention is worth a pound of cure”, if you are reading this before any flood occurs, check into preparing for such disasters by reading our article here.  As always, we are here to field questions or help with equipment, because flood restoration can be stressful and overwhelming.  Don’t give up!