Monthly Archives: November 2023

What to do when you find yourself in an air quality emergency

What to do when you find yourself in an air quality emergency

We’ve all been on the other side of the highway when an accident snarls traffic for miles behind it, and our lanes of traffic slow down but continue to move.  Whew, glad I wasn’t on that side, we think…but sadly sometimes we may find ourselves stuck in an air quality emergency that requires calm, decisive action to quickly get to safe air.  

On Wednesday, November 8, 2023, a fire at a small chemical plant north of Houston sent plumes of black smoke into the air.   According to the Reuters report on November 9, Sound Resource Solutions blends, packages and distributes oilfield and other industrial chemicals including sulfuric acid, acetone and petrochemicals like xylene and toluene, according to the company's website.  These are chemicals that are acutely toxic with the potential to cause serious eye, skin and organ damage, as well as carcinogenic. 

A news article from a Houston news station released the list of chemicals that had been stored on the site during the last 2 years, which confirmed they are quite toxic.  

However, despite the smoke and shelter-in-place orders (which have been lifted), it seems that officials are downplaying the possible effects.

  • According to a Houston news channel video the day after the fire was extinguished (Nov. 9), the Texas Commision on Environmental Quality was monitoring the air and “did not detect any levels of concern from the samples”.  

  • In the same video, an official from the University of Houston said that rain would wash any chemicals out of the air, dilute them out and they eventually go into the ocean.  

Here are the problems we see with these assessments: black smoke was seen moving north toward Livingston, Texas.  Such smoke carries a lot of particulates, which will deposit on businesses and residents’ homes, vehicles and farms (food sources), as well as drinking water facilities.  Also, by our estimates, Shepherd, Texas is 50-60 miles from Trinity Bay, which is open to the Gulf of Mexico.  In order to get to the ocean (Gulf of Mexico), the particulates and chemicals will pass through many drinking water sources!  Once again, it’s probable that authorities are not releasing timely information about hazardous levels of chemicals in the air (and no water reports were discussed).

If you find yourself in an emergency area like Shepherd, Texas, it’s best to do one of two things: stay inside and implement air quality containment measures, or drive out of the area as soon as possible.  Here are our recommendations:

If you choose to stay inside:

  • Close all windows and turn off air conditioning and heating systems if possible.

  • Although most HVAC systems don’t have fresh air intakes, you should close these intakes if they do.  

  • Don’t use exhaust fans like the kitchen or bathroom exhaust fans.  Don’t use clothes dryers, either!  Each of these pull air out of the house, which consequently draws air into the home through cracks in windows and other penetrations.

  • If you have air purifiers, run them continuously.  If you have only one purifier, run it in one small room where you can shelter for most of your time.  If you don’t have an air purifier, here's how to make one using a box fan and a MERV-rated filter.

  • Don’t cook if possible; try eating canned food or food that doesn’t require cooking or heating.  The reason is that cooking and heating food releases even more VOCs into the air, and you shouldn’t vent these with the exhaust fan.

  • Monitor AirNow.gov for local air quality updates, because the air quality outside your home will eventually be the air quality in your home.  If air quality outside deteriorates, you may want to gather supplies and necessities and evacuate via car.

  • Use bottled (preferable) or home-filtered water until you are sure that tap water has not been contaminated (which may be weeks or months).

If you evacuate:

  • Make sure that the HVAC in your home is turned off and all windows/doors are closed before you leave.  You can leave air purifiers running in your home, however.

  • Make sure you use the best masks you have until you get out of the area.  Exchange your mask for a new one if you start to have trouble breathing. 

  • Spend as little time outside as possible. 

  • When driving, keep your air conditioner set to “recirculation” mode until you get out of the danger area.

  • Bring/buy bottled water. 

  • Monitor AirNow.gov for local air quality updates and check updates by local news authorities. 

  • Upon returning home, clean carefully and thoroughly!  We have recommendations in our article here.

Note that smoke particles, which can contain toxic chemicals, will deposit on the ground, making it easy for people and pets to bring them into the house, so you may want to be vigilant about removing shoes and cleaning pets’ paws when you can.

Many people live or drive within range of being affected by toxic spills, fires and environmental disasters, so your best bet is being prepared (and have a healthy skepticism of all-clear reports until you can research the situation).

Photo by irfan hakim on Unsplash

Air quality in the Operating Room

Air quality in the Operating Room

If you are in the position to have elective surgery, you probably assume that the hospital does its best to mitigate infections by maintaining a sterile environment and using sterile procedures.  The Operating Room (OR) is where patients are at their most vulnerable because hospital-acquired infections (HAIs) can easily happen when the skin barrier is broken, resulting in a Surgical Site Infection (SSI).  Therefore, air quality is very important for patients’ protection, and there are a number of factors that govern the quality of the air.  In the U.S., OR air quality is regulated by three organizations: the American National Standards Institute (ANSI); the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); and the American Society for Healthcare Engineering (AHSE). Operating rooms require positive pressure, a minimum of 20 air changes per hour (ACH), with a minimum of four outdoor changes per hour. The standard specifies a minimum effective reporting value for air filter efficiency (MERV 16) but does not recommend a type of air delivery system. (Operating Room Sterilization: A Complete Guide to Air Quality)  Here are some details about these requirements:

  • Positive or negative pressure: Traditionally, hospitals make operating rooms positive pressure in order to keep contaminants from the rest of the hospital from infecting the patient on the operating table.  According to ASHRAE 170, operating rooms require positive pressurization of at least +0.01 in.w.g.  However, as operations are sometimes necessary on patients who may have contagious diseases like MERS or SARS CoV-2, hospitals are beginning to rethink whether they want to put the rest of the ward at risk of spreading a microbe from a positive pressure OR room. Discussions are underway regarding alternatives such as a positively pressured OR with negatively pressured ante/setup rooms. Another possibility is to have a negatively pressured OR with positively pressured ante/setup rooms.  (Rethinking air pressure in operating rooms could save lives)

  • The air change rate is a key factor influencing the concentration of microbe-carrying particles (MCPs). The higher exposure risks of surgical incision in the surgical microenvironment may be mitigated with increasing air changes per hour (ACH). (The impact of air change rate on the air quality of surgical microenvironment in an operating room with mixing ventilation)  

  • A key design requirement within ASHRAE 170 for operating rooms is the primary supply diffuser array. The airflow in the primary diffuser array should be unidirectional and downward, with an average velocity of 25 to 35 cfm per sq. ft.  This is recommended with the sole intent of creating a large sterile zone around the patient and medical staff. The standard dictates that the coverage area of the primary supply diffuser array should include the surgical table and extend a minimum of 12 in. beyond the footprint of the surgical table on each side and that no more than 30% of this area may be used for nondiffuser uses (like lighting, surgical gasses, electrical outlets, televisions, etc). This recommendation ensures that enough clean, filtered air is dispensed above the patient while accommodating the complex medical equipment present in today’s modern operating rooms. (How is ASHRAE Standard 170 Applied to Hospital Operating Rooms?)

Although not it’s not mandated, it’s also a good idea to have restricted access to the OR during surgical procedures.  The number of door openings are related to the number of colony-forming units (CFU) in the OR.  According to this study, increased number of door openings and surgery duration increased CFU counts in the OR, but the relationship between these variables was only observed outside the Laminar Air Flow.(LAF). Within LAF conditions, only the number of staff was associated with higher CFU. 

There have been several key developments in systems that promote ultra-clean operating rooms.  Laminar Air Flow (LAF) systems were developed by Sir John Charnley in the 1960s for use during joint replacement implantations.  They are useful for maintaining sterile conditions in the center of the operating room (under the diffusers) because they produce a continuous flow of microorganism-free air, which improves air quality by reducing infectious microbes. However, a 2023 meta-analysis agreed with multiple studies that have found it ineffective for reducing SSIs, and even possibly increasing the likelihood of SSIs, during orthopedic procedures.  (Laminar airflow ventilation systems in orthopaedic operating room do not prevent surgical site infections: a systematic review and meta-analysis)  In addition, air outside of the sterile field (that which is supplied by the LAF system) is often called the “dirty donut” because it is not effectively sterilized by the LAF; air in the dirty donut can be up to 100 times more contaminated than the center.  There are several solutions to improving the air in the dirty donut; Aerobiotix has developed a mobile unit called Illuvia that can reduce the contaminants.  

Source: Cleaning up the Dirty Donut

There is no standard for LAF design in the US.  In addition to the filters employed, different sterilization devices can be employed within or outside the LAF cabinet to increase deactivation of pathogens.  According to Steris, a major design/manufacture/installation firm for OR suites, the following technologies are improving LAF cabinets: 

  • UV light: Use of mobile and ceiling mounted UV light systems is restricted to when patients and staff use full personal protective equipment.  This type of light is also limited to line-of-sight, meaning that disinfection is obstructed by ceiling mounted fixtures and other equipment.  UV light may also embrittle certain materials and fixtures.  Therefore, in-duct UV sterilizers are preferred.

  • In-duct hydroxyl generator systems ultraviolet energy to produce reactive oxygen species known as hydroxyls. Airborne hydroxyls are ideal sanitizing agents which reduce pathogens and neutralize volatile organic compounds (VOC) and a broad range of chemicals. Atmospheric hydroxyls are natural-occurring molecules produced by the action of the sun’s ultraviolet energy on oxygen and water in our atmosphere. The hydroxyls are a natural oxidant and safe for patients and staff to be present during treatment without additional PPE. The system can run continuously and year-round, providing the potential for maximum surgical uptime. An added benefit is that hydroxyls help mitigate odors caused by surgical smoke and cauterized tissues.

According to this 2018 paper, it may be wise to adopt some standards of cleanrooms in ORs.  One such principle is maximizing the use of ceiling space to make the ceiling one large diffuser.  The reason for this is that every gap in airflow delivery (for instance, around a light connection) causes a low pressure area into which airflow is directed, producing turbulence.  Therefore, the operating room would look more like this: 

Source: How is ASHRAE Standard 170 Applied to Hospital Operating Rooms?

LAF is also described as Uni-Directional Air Flow (UDAF), but UDAF may not always be laminar.   Here’s the difference: UDAF describes the direction of flow, however the velocity must be below 90 feet per minute in order to be described as laminar (non-turbulent).  It’s easy to see that the periphery (outside the Ultra Clean Ventilation area in the center) has a lot of turbulent air flow.  Although the large lights over the operating table do produce some turbulence, it is not visualized here.

Source: Air Quality in the Periphery of Operating Rooms during Surgery

Previous LAF systems utilized fans to force air down.  A new type of LAF system called Opragon was developed by the Swedish firm AvidCare, and the system uses Temperature-controlled AirFlow (TcAF).  The technology behind TcAF is based on the ventilation system pumping out slightly cooled air into a zone around the operating table. By taking advantage of the fundamental laws of nature, TcAF breaks the convection currents in an effective and energy-efficient manner. Since cool air is denser than the surrounding warmer air, it drops towards the floor. The air speed is dictated by the temperature difference in the room.  a temperature difference (ΔT value) of -1.5 to -3°C is required between the ultra-clean air and the ambient room air at the operating table to guarantee a fall speed of about 0.25 m/s at the level of the operating table. The technology continually checks to ensure that the ultra-clean air maintains a constant under-temperature of 1.5–3°C regardless of the temperature of the ambient room air. (Temperature-controlled AirFlow)

Air curtain systems like Mediclean emit an air curtain around the perimeter of the sterile area.  The Mediclean system uses Continuous Particle Monitoring (CPM) to measure airborne particles in real-time and uses simple visual alarms. When particles are detected, Mediclean® CPM systems automatically increase the airflow from the UCV to quickly flush the contamination away from the safety-critical area, protecting both patients and surgical staff.

Other innovations include:

  • Surgicube, which is positioned just above the operating table, emits sterile air for minor surgeries.

  • Surgibox, a portable sterile surgical field with self-supporting battery and filter system

  • Air Barrier System, which is a portable diffuser to bathe the surgical site in ultra-clean air 

  • A novel upward-flow design to ventilate using natural stack effect, which is less complex requiring fewer scarce components, lower maintenance commitments, lower energy requirements and operating costs.

And, it’s likely that even more innovations are in the pipeline.  We thought it would be helpful to let you know that even the air in operating rooms is important for the operation’s success and your healing, so you might want to check into it if you need to have surgery!

Non-toxic ways to deal with Hard Water

Non-toxic ways to deal with Hard Water

Many of us live in areas with very “hard” water.  How can water be hard?  It’s a way of saying there are a significant amount of minerals in the water, which can leave spots on your appliances, clog your pipes or leave a filmy residue on your hair or skin after showering.  If, despite frequent cleaning, your toilet looks like the following, you probably have hard water! 

Hard water is not necessarily bad for you; after all, many “mineral waters” for consumption capitalize on these very minerals that we are not fond of looking at on our appliances. 

According to the science, “hard” water can be categorized into alkaline (e.g., calcium carbonate CaCO3), non-alkaline (e.g., CaSO4), and silica based, with alkaline being the most common.  This water chemistry will of course affect the ability to prevent scale.  

Since CaCO3 is the most common type of mineral, most findings are delivered as a number that reports the concentration of calcium carbonate or calcium carbonate equivalents for a given unit of water. This result may be expressed in grains per gallon (gpg), parts per million (ppm), or milligrams per liter (mg/L). According to the Water Quality Association, the hardness scale, measured in gpg of calcium carbonate, can be represented as follows:

Less than 1 gpg is considered soft

Between 1 and 3.5 gpg is considered slightly hard

Between 3.5 and 7 gpg is considered moderately hard

Between 7 and 10.5 gpg is considered hard

More than 10.5 gpg is considered very hard

(Source: How is water hardness measured?)

If you want to “soften” your water, there are many solutions ranging from a few dollars to thousands of dollars, and from chemical-free to lots of chemicals.  Obviously, the best would be chemical-free and cheap…but most preferably chemical-free.  Here are 3 proposed solutions to keeping minerals from adhering to the surfaces your water comes in contact with (shower doors, bathtubs, toilets, sinks, etc.).  You can:

  1. Add a true water “softener” into your water source to remove the minerals
  2. Add a slick “film” or coating to the appliances so that the minerals don’t stick.
  3. Change the chemistry of the water so that the minerals don’t stick (EMF, MWT, AMT)

Let’s dig into these to find out which is best for you.  Our first recommendation is to test your water.  There are a lot of water testing kits on the market, some of which have 16-20 functions (a lot of tiny colors on the strip!)  While these are good for getting an overall picture of water quality, if you are interested in hardness, a specific test for hardness has better clarity.  This one by Varify retails for $12 on Amazon.  If your water comes in more on the green side (low minerals), you may need to do more research on the nature of your water “stains” because that result shows it’s actually low in minerals.

If your water shows as moderately to very hard (above 3 grains per gallon), then you might want to do something about it.  Moving on to our 3 proposed solutions:

Water Softeners

Softener systems actually remove minerals such as calcium and magnesium from your water by using an “ion exchange” process. The softener passes incoming water through a bed of resin beads, where minerals are attracted to the beads and softened water flows out of the tank.  Once in a while, the beads must be regenerated by flushing it with a strong solution of sodium chloride (salt) or potassium chloride, causing the minerals to release from the beads.  Then the system is ready to soften water again.   Softeners come in different sizes, for “whole-home” or smaller “appliance” use.  Although the upfront cost is more, the per-gallon cost is typically lower on whole-home systems.  In addition, appliances all over your home, from your coffee maker to your washing machine perform better with softer water.  However, there are disadvantages to using whole-home softeners: they can corrode pipes (it’s not recommended to soften water on very new pipes; you’ll want to wait several weeks to months so that an internal mineral film will develop), it does add a small amount of sodium to your drinking water, and regular testing of the water and maintenance of the softener is necessary to make sure the softener is working properly. (Home Water Softening Frequently Asked Questions)   Since there are many whole home systems available, we chose to review a few systems that soften specific appliances where people see the most impact.

Water softeners also lower the surface tension of water, making it feel “wetter” or “more slippery”.  On a porous surface, having a lower surface tension allows water to penetrate deeper allowing for better cleaning.  The addition of soap or the use of hot water will both lower the surface tension of water… Water softeners function through the process of ion exchange, i.e. exchange calcium and magnesium ions for sodium ions.  The conclusion can be drawn that sodium lowers the surface tension of water while calcium and magnesium ions increase the surface tension…There are other factors that influence the "wetness" or "slippery" feel of soft water including pH and alkalinity.  Typically the higher the alkalinity and pH, the greater the impact of this phenomenon.  This may help to explain why naturally soft water or reverse osmosis water do not have the same "wetness" or "slippery" feel. (The Kinetics and Aesthetics of Soft Water)

Softeners are measured by the number of “grains” they remove before regeneration is needed.  Here’s where you need to know how hard your water is (hence testing is needed!).  For example, if your water is 10 gpg, there are 3 people in your household and since the average person in the US uses about 75 gallons of water per day, that means 10 x 3 x 75 = 2,250 grains per day.  A water softener is usually sized to regenerate about one time per week, so that means a softener of 15,750 grains would work (16,000 grains like this one is ideal for an RV or live-aboard boat).   This article has very good information about the salt efficiency of different softeners, as using a lot of salt to regenerate is not only costly, it’s not good for the environment 

Washing dishes and clothes in hard water doesn’t yield great results.  Just like the inside of the sink or toilet, minerals can build up on your washed clothing over time, making them feel stiff and look dingy. In the dishwasher, minerals deposit on dishes causing spots and incomplete rinses.  “Water softening tablets” are available for use in the laundry or dishwasher and here are some non-toxic brands that work well with hard water:

  • Calgon 4 in 1 Water Softening Tablets, $51, for 75 tablets for laundry washing machine: add 1 tablet with each load of laundry (and use your own detergent).  Mainly composed of polycarboxylates, these tablets prevent minerals from depositing on surfaces and are generally deemed safe for human contact (after rinsing) and the environment.  Therefore, although these are “chemicals”, you can safely add softeners to your dishwasher or laundry:
  • BioKleen Free & Clear Natural Laundry Detergent, $35 for 150 loads, is very low cost for a natural detergent and is said to work well for moderately hard water.  Like many non-toxic detergents, it dissolves and works better in warm water rather than cold.
  • Planet Automatic Free & Clear Dishwasher Pacs, $6 for 20 pacs, is among the lowest cost per load, has transparent ingredients, and is good for hard water according to reviews. 
  • Blueland Dishwasher Detergent Tablet Starter Set, $30 for 60 tablets, do not have wrappers at all and are good for hard water according to reviews.

Shower “filters” are a great idea to prevent the harsh chemicals that municipal water treatment companies employ to keep drinking water safe.  Mostly we’re talking about chlorine and its by-products (see our article about the nasty effects of using too much chlorine).  But most shower filters don’t address hard water (which causes all those spots on your glass shower doors), or iron or sulfur in the water.  However, there are some shower filters that do; you must read the product description carefully to see what is removed.  The first product below is primarily a water softener to remove hard water minerals; the next 2 products are filters with some water softening capabilities.

  • ShowerStick Shower Water Softener, $260: This company has done its homework on water softening and actually allows the customer to do so as well, by providing a water testing kit with their kit. Using the water test weekly will show you when to “regenerate” the resin beads inside, which accomplish the softening.  Depending on how often you use the shower, regeneration may need to be done on a weekly basis.  The company also offers a KDF water filter to remove 95-99% of chlorine and controls the buildup of microorganisms such as bacteria, algae, fungi and mold.
  • PureAction Water Softener Shower Head Filter for Hard Water, $40, is a shower head meant to replace your existing shower head.  It comes with 2 extra filters that are replaceable (the filter cartridge is what removes the minerals and chlorine).  According to reviews, customers with sensitive skin have had good results with this showerhead. 
  • AquaEarth 15 Stage Shower Filter, $30, is an in-line water filter that allows you to add your own shower head.  It lasts approximately 6 months and replacements run about $7.50 each ($30 for a pack of 4).

Coatings that inhibit scale formation

There are a lot of anti-scale coatings available for commercial equipment, but not so many for residential use.  The application of a coating is sometimes not so difficult when a fixture is new (like a new toilet), but doing the necessary cleaning and application in an older fixture can be a lot of work.  In addition, the chemicals that make surfaces slick enough to inhibit scale are often not disclosed.  For example, Spotless Toilet Coating contains 84-94% isopropyl alcohol (for quick drying) and 0.5-1% of a proprietary acid, leaving 5-10% undisclosed ingredients. (MSDS)

Salt-free Water Conditioners

There are a number of water “conditioners” that do not use salt, electricity, or other energy to keep minerals from depositing in your appliances.  Here is a rundown of these technologies:

  • Template-Assisted Crystallization (TAC) uses surface-treated resin beads to convert (not remove) dissolved hardness ions to microscopic scale-resistant crystals. The polymeric beads are fluidized, creating agitation that releases the microscopic crystals and allows for further formation of crystals. Once these crystals are formed and released from the beads, they are insoluble particles that do not form scale on surfaces. In some cases, a fine dust may form on dishes but it can be wiped away. Template-assisted crystallization systems typically require relatively clean water as the input, and may require pretreatment if the water contains high iron and manganese concentrations or other sediment..(Drinking Water Treatment Salt-Free Water “Softener” Options)  Brand names include Aquasana, AO Smith and Pentair-Pelican.
  • Ultrafiltration and Nanofiltration: These processes use very fine filters to remove bacteria, viruses, and some salts from water.  This article by the Safe Drinking Water Foundation shows the different substances these processes can remove. 
  • Reverse Osmosis: These systems work by pushing water through a microscopically small filter material.  This semi-permeable membrane has a pore size of around 0.0001 microns, effectively only allowing the small water molecules through and catching any larger molecules of contaminants, organic materials or even salt. Originally designed to desalinate seawater and reduce high chemical contaminant material such as heavy metals, reverse osmosis is now in use in many government, commercial, military and even residential applications.  It does produce ultra-pure water, but also wastes a lot of water due to back-flushing requirements, and is relatively expensive. (Learn The Pros And Cons Of Reverse Osmosis Water Filtration Systems)

Magnetic Water Treatment, Anti-Scale Magnetic Treatment, Electromagnetic Fields

There’s been a fair amount of studies on AMT (anti-scale magnetic treatment) or MWT (magnetic water treatment) or EMF (Electromagnetic Fields).  Wikipedia states that it is “unproven and unscientific.”  However, EMF has seen a lot of study since 2010, and one meta-study concluded that although different results were reported regarding the influence of EMF in minerals precipitation, the results support the same hypothesis that EMF induce bulk precipitation of crystals rather than adhesion to the surface of reactors, pipes and vessels or to membrane surfaces. If we consider the bulk precipitation enhancement as effective EMF treatment, the percentage of effective EMF cases can reach 95% for the discussed 48 studies, 5% of the studies observed negligible improvement with EMF treatment, none of them has negative results.  This is not “unproven and unscientific.”  

There are two configurations of an EMF device used in water systems: permanent magnet and solenoid coil (uses alternating or direct current).    The efficiency of EMF depends on the properties of the field, including intensity, waveform, and frequency (the field strength varies with the number of coils or the thickness of the wire used), the material of pipe or surface, pH of the water, temperature of the water, residence time (how long the water is exposed to the EMF), and suspended particles (in some cases the presence of suspended particles such as silica is necessary for EMF water treatment to be effective, which can adsorb metal ions and increase bulk precipitation). (EMF meta-study)

Under ordinary circumstances, the scale forms through heterogeneous nucleation of CaCO3 (calcium carbonate) on the substrate surface. By contrast, when magnetically treated is used, nucleation (formation of crystals at a molecular level) takes place homogeneously in the body of the water, and small disc-shaped crystallites (about 50 #m in diameter and 1 #m thick) are formed.  Initially suspended, these crystallites gradually settle as a sediment at the bottom of the container.  (Magnetic Treatment of Water: A Theoretical Quantum Model)

When magnetic water treatment was first patented in 1945 by a Belgian company, there was not a complete understanding of how magnetic fields inhibited scale formation.  Today, however, one theory is presented here:  “Through the efforts of universities and their extensive laboratories, the performance of the magnetic water treatment for scale prevention has moved from being a phenomenon to understanding that the magnetic field creates a hardness crystal called Aragonite. It forms this because a tiny percentage of water is always dissociating – hydrogen (proton) leaving and forming H3O or hydronium – and the energy imparted to the water by the magnet causes the percentage of hydronium to increase dramatically. Water missing the hydrogen reacts differently with calcium bicarbonate (calcium hardness) than does water with full hydrogen in the size, shape, and texture of calcium carbonate crystals formed as evidenced in electron microscope photos. All crystals are void of charge so they won’t adhere to metals, however, the aragonite form is softer and is easily flushed through plumbing. No magic and no mystery. The performance relative to scale prevention is directly proportional to magnetic field strength and speed of water through alternating magnetic fields.” (Magnetic water treatment for scale prevention)

This is similar to the explanation given in a paper from 2000: MWT changes the form of calcium in water. The researchers tested MWT by passing water through a magnetic field of 1000 Gauss (0.1 Tesla).  The samples were then heated in open beakers, forming scale when the water evaporated.  The scale was inspected by X-ray diffraction (which can reveal what it’s made of) and an electron microscope (to view the structure).

The results confirm earlier claims that there are two different types of calcium deposits made: calcite and aragonite.  They are both made of the same stuff (calcium), but form in different structures.  The small beads of calcite tend to make hard scale that clings well to surfaces.  Aragonite forms in longer shapes which are less prone to form hard scale, and keep moving along with the water.  The data they collected also confirms that the effect can last over a period of time, as much as 200 hours.

Source: Magnetic Water Treatment, K&J Magnets, Inc.

In conclusion, if you have calcium carbonate in your water, then MWT may work in preventing some scale buildup.  Since it’s likely that many small magnet systems are not strong enough for the amount of water flow, it’s best to purchase from a company that knows its science (and offers different size magnets/appliances for different size pipes).:

  1. Magnation: this company employs several technologies, not just magnets, into their products.  They have a questionnaire enabling you to find the right product.
  2. ESF scale preventer uses permanent magnets, but you need to install them in-line with the water pipe, which may require a plumber. (contact company for price)
  3. Build your own: Using K&J’s equations, they have calculated the strength of the magnets necessary to do the work, and they sell them!  Basically you just have to measure the diameter of the inlet pipe where you are going to place the magnets, and build a system to place them opposed over the pipe so they don’t fall off or slam into each other.  They offer magnets in strong, stronger and strongest energy.

One more product was tested by one of our team members.  Krazy Klean is a magnet-based product that is placed in the toilet tank to reduce scaling in the toilet bowl, leading to less cleaning and use of chemicals.  In the toilet we tested, it definitely worked.  Old deposits were not removed, but once the bowl was cleaned (see our article here for non-toxic methods), it stayed clean for a month test period (from waste and minerals) with the Krazy Klean device in the tank, whereas it was previously cleaned about 2x per week yet still had waste and mineral residues building up.  The manufacturer advertises "Just drop it in your tank and eliminate scrubbing for an entire decade", however, we promote cleaning your toilet bowl regularly with non-toxic cleaners to reduce germs.  The company provides a report of its scientific testing on its website if you'd like to check out how it works.

Photo by Andres Siimon on Unsplash

Hidden benefits in the scents of the holidays

Hidden benefits in the scents of the holidays

In the US, you know that winter holidays are coming when pine-scented, cinnamon, clove and peppermint candles and essential oils come out.  Besides giving a fresh, yet cozy scent to your home, each of these have hidden benefits in their chemistry.

Pine oil (which emits a concentrated fragrance due to the terpenes it contains) has many health benefits.  Primarily, the terpenes (which are biogenic volatile organic compounds or BVOCs) are phytoncides. Phytoncides are aromatic compounds from plants which can increase your number and activity of natural killer cells, a type of white blood cell that supports the immune system and is linked with a lower risk of cancer (see our article about why it’s good to take walks in the forest!).  These BVOCS produced by the pine tree include  α-pinene and α-phellandrene, both have which have shown to have anti-inflammatory properties and anti-cancer properties when inhaled and d-limonene and p-cymene phytoncides, which have shown to specifically act against allergic lung inflammation too.  (How Pine Can Benefit Your Respiratory Health)

Hinoki cypress, cedar, oak, pine and spruce are just some of the trees to release phytoncides.  Camphene is a common monoterpene and phytoncide found typically above 10% in many essential oils including white fir, black spruce, hemlock and Engelman spruce. Camphene is noted for its antioxidant and mucolytic properties. It’s similar to camphor; both have a well-known smell that is invigorating and refreshing. (3 Essential Oils High in Terpenes)

Cinnamon scents are synonymous with holiday baking, but did you know that it is also useful in combating mold in your home?  The cinnamon sticks you may be familiar with are actually the inner bark of several types of trees, which are rolled into “quills” and dried.  Cinnamon powder is made by grinding it and cinnamon oil can also be extracted from the bark.  You can use cinnamon essential oil diluted in water to clean small patches of mold and mildew from surfaces, or place it in a diffuser to combat airborne mold spores.  Cinnamon powder can be sprinkled or mopped onto floors to fight mold, or used as a paste to clean surfaces (beware that it can stain however).  Boiling cinnamon sticks in water gives a double benefit; besides making your home smell lovely, the water will become more concentrated with cinnamon liquid, which can be added to your cleaning solutions as well.  Check out this helpful article for more tips on using cinnamon.  Scientists are also exploring use of the leaves; there were 16 compounds found in the active fraction of cinnamon leaf extracts and 3 dominant compounds that are anti-fungal compounds. (Antifungal Activities Of Cinnamon Leaf Extracts Against Sigatoka Fungus (Pseudocercospora Fijiensis))

Growing up, my family used to stick cloves into oranges to make pretty scented holiday decorations. These little sticks actually come from the flower buds of the clove tree, which primarily grows in Indonesia.   Clove oil has so many uses!  It has a strong, earthy smell, which are the BVOCs.  It is antibacterial, antiviral and antifungal, and can be used in throat sprays and oral hygiene, as an analgesic to relieve nerve pain, infused into syrups, honey or vinegar or in a diffuser to reduce airborne mold and microbes.  (5 Health Benefits Of Clove Oil You Need To Know)  It’s also a dermatological fungus-buster: both clove essential oil and its volatile vapor strongly inhibit spore germination and mycelial growth of dermatophytic fungi (fungi that require keratin, a protein in hair, skin and nails, for growth). The volatile vapor of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.  (Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi)

Menthol is the monoterpenoid in peppermint that gives that fresh smell and taste. The high menthol content in Peppermint make this essential oil excellent for diffusion and inhalation to reduce congestion and clear the airways. It is one of the best essential oils for colds, flu, bronchitis and asthma, with studies showing that Peppermint oil is rich in compounds that are anti-microbial, antiviral and antibacterial.  It can also help with seasonal allergies, helping to unclog the sinuses and clear pollen out of the nasal passages.  (Peppermint Benefits) Peppermint oil is a key ingredient in many natural pesticides and pest deterrents, because insects hate the smell!  Spray peppermint oil around your home to repel ants, spiders, mosquitoes, roaches, ticks, and even mice.

You can also apply peppermint oil directly on the skin as a natural bug repellant (if you have sensitive skin, you can use a carrier oil).  Peppermint oil is a natural antifungal, antimicrobial, and antiviral. Spray it over countertops, especially in bathrooms, and kitchens. (20 Uses For Peppermint Essential Oil)  Check out this natural floor and surface cleaner using essential oil–my favorite is peppermint oil to give a fresh scent to all surfaces!

  • 1-¾  cups TotalClean Concentrate

  • ⅛ cup rubbing alcohol

  • ⅛ tsp dish soap

  • 5-10 drops essential oil (optional)

These are only some of the hidden benefits of the scents we associate with winter and holidays…you might want to research your other favorites to find new uses for them in your health regime and home!

Hydrogen Peroxide as an Air Cleaner

Hydrogen Peroxide as an Air Cleaner

Hydrogen peroxide has been around for a long time.  The brown bottle you may keep in your bathroom as an antiseptic for treating wounds has many, many more uses!  It was discovered in 1818 by scientist Louis Jacques Thénard as he reacted barium peroxide with nitric acid.  Today, it’s still used medically, as well as in many diverse applications such as launching rockets and satellites into space, or as a more environmentally-friendly alternative to chlorine-based bleaching products in the manufacture of paper.   (Peroxide Power)

Hydrogen peroxide is chemically written as H2O2, meaning it has 2 hydrogen atoms and 2 oxygen atoms.  It is an oxidizing agent, releasing an oxygen atom when it decomposes.  Decomposition happens quickly in the presence of organic matter like microbes or reactive compounds (hence the bubbling fizzing action on wounds or with baking soda), but it will also decompose slowly in storage, which is why it’s sold in those brown bottles to protect it from light and the ambient air.  

Hydrogen peroxide can be used as a disinfectant in appropriate dilutions on surfaces, in laundry, and in the air.   In the air, hydrogen peroxide is safe in concentrations up to 1ppm according to the Occupational Safety and Health Administration (OSHA). Because it’s chemically very similar to water, it can be produced from water and decomposes into water.  Yet as common and beneficial of a substance as it is, bulk hydrogen peroxide is surprisingly hard to produce and transport.  Currently, large quantities of hydrogen peroxide are made through what’s known as the “anthraquinone process.” This method is energy-intense, requires large-scale production, and produces large quantities of carbon dioxide (CO2) as a byproduct. While directly reacting hydrogen and oxygen to make hydrogen peroxide would be ideal, thermodynamics prefers to form the more stable water (H2O) over hydrogen peroxide.  (Producing hydrogen peroxide when, and where, it’s needed)  However, since only a minimal amount of hydrogen peroxide is needed and proven safe to kill microbes in the air, purifiers are now using different technologies to produce “dry” hydrogen peroxide and distribute it for air cleaning.  Here are some examples:

  • Photohydroionization (PHI) is a technology developed by RGF Environmental Group that uses a broad-spectrum, high intensity UV light targeted on a hydrated quad-metallic catalyst. The UV light in conjunction with the catalyst promotes the conversion of naturally occurring water vapor into airborne molecules of hydrogen peroxide (H2O2). These airborne H2O2 molecules revert to oxygen and hydrogen once they have come in contact with a pollutant. (PHI) This company produces standalone and in-duct products.
  • The TADIRAN AIROW technology fractures Oxygen (O2) into two separate “O” molecules by using a discharge current. These “free O” atoms combine with the H2O molecules in the airflow, transforming into hydrogen peroxide (H2O2). The H2O2 is then distributed through the indoor unit of the air conditioner into the conditioned living space. The amount of hydrogen peroxide that Tadiran’s new TADIRAN AIROW releases into the conditioned space is below the safety requirement as determined by OSHA of 1ppm. TADIRAN AIROW has been proven to release less than 7ppb of hydrogen peroxide. (HYDROGEN PEROXIDE TECHNOLOGY FOR INDOOR AIR PURIFICATION)
  • AirROS purifiers utilize and create 7 species of ROS (Reactive Oxygen Species).  The first stage, which occurs inside the device, includes 5 of these ROS (atomic oxygen, singlet oxygen, hydroxyl radicals, superoxide and peroxynitrite), and 2 species (gas-phased H2O2- dry hydrogen peroxide and low concentration levels of O3-ozone) leave the reactor and move into the room for further disinfection.  According to AirROS, “...Dry Hydrogen Peroxide purifiers technology can only provide short-distance surface treatment within the air purifier because of the short life of hydrogen peroxide. If you have a surface not close to the purifier, it will be untreated and left vulnerable to contamination.  AirROS commercial air and surface purifiers offer long-distance surface treatment because of the Trioxidane that forms from O3 and H2O2 combined, which means you can treat any surface, no matter how far away it is from the purifier. As a result, it provides an added layer of protection against surface contamination and eliminates odor effectively.  Trioxidane decomposes very quickly in water but has a half-life of 16 minutes in normal ambient conditions, making it one of the longest lasting hydroxyl radicals. It’s theorized that the human body also produces trioxidane as a powerful oxidant against invading bacteria because the body also produces singlet oxygen and has lots of water, the two ingredients for making trioxidane.  (Trioxidane)
  • AsepticSure Oxidation by Medizone International (UK company) is a system that uses hydrogen peroxide and ozone to clean unmanned rooms. According to EPA registration, personnel must be trained, the room must be sealed, and the ozone generated can have severe effects on certain materials, such as natural rubber and nylon.  The time to disinfect, personnel required to operate the system and limitations (not to be used with contraindicative materials or with life-saving equipment or with personnel in the room), all seem to be quite restrictive, yet the system has been sold to and installed at many medical facilities.
  • A hydrogen peroxide generator composed of a TiO2 catalyst that is activated with UV light was studied in 2022.  The photocatalyst becomes activated by light given off by a nearby UV-A bulb which excites electrons across the bandgap of TiO2, converting water vapor in the air stream passing through the catalyst into H2O2.  The researchers were aware that it is theoretically possible that H2O2, OH radicals, and hydroperoxide radicals can enter an air stream that passes through an operating photocatalytic TiO2 structure. From an indoor air space standpoint, however, only H2O2 will survive long enough to be detected at distances greater than about 1 cm from the photocatalyst. Over time, the H2O2 that has entered the room will either react with organic species within the indoor space or decay naturally into the benign products, water and oxygen. Hydrogen peroxide can last up to 30 minutes, depending on temperature, humidity, and reactive contents in the room.

Limitations of dry hydrogen peroxide include:

  • Position of the unit: position is very important, because dry hydrogen peroxide has relatively high reactivity, which can diminish its effective lifetime. For instance, H2O2 is known to react with metal surfaces such as those provided by the metal ductwork in the bypass duct. As the pathlength between the device and the room becomes longer, the H2O2  concentration could possibly become diminished (due to reactions with the metal ducting) to a point where MS2 inactivation is minimal or no longer even occurs (2022 study Evaluation of a Gaseous Hydrogen Peroxide Generating Device). 
  • Sensitivity: The other product, trioxidane, is a product of ozone and hydrogen peroxide.  Although devices are restricted in ozone output in the US, those who have asthma or other respiratory issues may want to use them with caution. 

Photo by Bill Jelen on Unsplash

A Clean Way to Update Your Popcorn Ceiling

A Clean Way to Update Your Popcorn Ceiling

Do you have an old ceiling that needs updating?  “Popcorn”, acoustic tile and other types of textured ceilings can become brittle and contribute to bad air quality because they can hold dust and mold spores, as well as fall off in big or small chunks whenever they’re disturbed (think small flying toys, changing light fixtures, cleaning cobwebs or any type of paint touch-up!).  Worst of all, some ceilings installed before/through the 1980s may have asbestos in them (here is a helpful article if you suspect your ceilings may have asbestos).  Refinishing or replacing such a ceiling is a major undertaking that involves removing or covering all the furniture, blocking off the HVAC and doorways, and using personal protective gear to avoid inhaling the dust.  It’s daunting and expensive even for seasoned DIYer’s, and not a realistic option for renters.  

It’s important that homeowners or renters with older popcorn ceilings be aware that ceilings installed before the early 1980s may have asbestos in them. Asbestos is a mineral fiber that occurs in rock and soil (Learn About Asbestos). According to the EPA, most uses of asbestos are not banned; however, it was banned from spray-applied surfacing materials (such as ceiling textures) in 1978. (EPA Actions to Protect the Public from Exposure to Asbestos).  So, it’s unlikely for any ceilings constructed/finished in the late 1980s to have asbestos.  Although professional removal of asbestos-containing materials is best, encapsulation of the ceiling by professional stretch ceiling installers is a (likely less-expensive) alternative. 

Stretch ceilings are a design idea that’s new to the US, but has been more popular in Europe and the Middle East for some time now.  Far from being relegated to the renovation industry, architects even specify them in some designs, and they are ideal for athletic and commercial spaces. 

There are two types of stretch ceilings: fabric or PVC.  Unfortunately, PVC must be heated during installation (usually with propane heat cannons) and it will start to off-gas and continue to off-gas throughout its life (up to 20 years).  (Two Kinds of Stretch Ceilings)  Therefore, in this article we will focus on fabric ceilings, which still have plenty of design choices, colors and aesthetics.  Fabric ceilings from Popcorn Ceiling Solutions are made from 100% knit polyester strands, infused with a water-based polyurethane (PU) coating, which makes them hydrophobic and mildew resistant.  They are VOC-tested and CE-certificated. 

According to stretch ceiling websites, there are many advantages to these installations.  Here are a few:

  • Lighting can be installed under or over stretch fabric ceilings.  Underneath, led lighting installations can be configured as spotlights or tracks in any design, with individual and dimmer controls available.  Traditional flush and pendant lights can be installed through the ceiling so that traditional design aesthetics can be maintained.  

  • Acoustic insulation can be hidden above a stretch ceiling, which is an obvious benefit for schools and athletic buildings to dampen noise.  You can also add it to your apartment or bedroom to get more privacy and peace.

  • Moisture and mildew resistance is a plus for humid environments like bathrooms, athletic facilities and indoor swimming pools. 

  • Many city apartment or condo buildings have concrete ceilings, which have limited lighting and design options.  A stretch ceiling adds many more possibilities.

  • Renters can upgrade their stained, dated ceilings by asking them (or asking permission) to install stretch ceilings. 

  • Stretch ceilings only lower ceilings by inches: the typical installation requires a minimum of 1” clearance, so substantial ceiling height is not compromised.

  • Cleaning with a mild soap and water are all that’s needed if the ceiling becomes soiled.  

  • Most installation companies give warranties that the ceiling will not sag or drop during the warranty period.

  • The fabric may be fire-rated.  According to Popcorn Ceiling Solutions, their fabric has the highest fire rating for building materials and a Class A. Fire and Smoke certificate is available upon request. (Frequently Asked Questions)

  • Multiple designs and colors are available; it’s even possible to paint your own ceiling (however it may void the manufacturer’s warranty). 

  • Stretch ceilings appear even smoother than skim-coated drywall and are completely level.

So, if you have a flaky or unsightly ceiling that may be contributing to bad air quality at home, check into fabric stretch ceiling installers in your area.  Then the ceiling will be one less source of dust and allergies in your home!

What are xenobiotics and POPs and how do our bodies deal with them?

What are xenobiotics and POPs and how do our bodies deal with them?

Xenobiotics surround us everyday!  If you have an illness that you can pinpoint to a chemical or environmental exposure, then you know what a xenobiotic is and how it can seriously affect your health.     

  • Xenobiotics have been defined as chemicals to which an organism is exposed that are extrinsic to the normal metabolism of that organism. (Progress in Molecular Biology and Translational Science).  Since mold produces mycotoxins that are not made in our own bodies, these mycotoxins are xenobiotics to us, as are many man-made chemicals like POPs. (Alcohol is also a xenobiotic).

  • Persistent Organic Pollutants (POPs) are chemicals of global concern due to their potential for long-range transport, persistence in the environment, ability to bio-magnify and bio-accumulate in ecosystems, as well as their significant negative effects on human health and the environment. The most commonly encountered POPs are organochlorine pesticides, such as DDT, industrial chemicals, polychlorinated biphenyls (PCB) as well as unintentional by-products of many industrial processes, especially polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF), commonly known as dioxins. (Food safety: Persistent organic pollutants (POPs))  POPs are fat-soluable, and tend to accumulate in our fat tissues. POPs are xenobiotics, but not all xenobiotics are POPs. Exposure to POPs has been associated with diabetes, cardiovascular diseases and many other chronic diseases. (Glutathione!)  

Most of these xenobiotics are transformed by enzymes in the liver, and are then eliminated by excretion.  First of all: What is an enzyme?   Enzymes are complex proteins produced by living organisms that act as catalysts in chemical reactions.  Enzymes can either build up or break down.  Enzymes themselves are not consumed.

This is where our genes come in.  “GST” genes are important for detoxification of the body, in that they manufacture those enzymes that facilitate the detoxification reaction.  One of the most important GST enzymes is GSTP1.  

The GST pi gene encodes (provides instructions for building) the enzyme Glutathione S‑transferase Pi (GSTP1), which plays an important regulatory role in detoxification, anti‑oxidative damage, and the occurrence of various diseases.  The detoxification reaction is called “glutathione conjugation”.  (GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review))  Following is an example of glutathione conjugation; note that the “SH” site on glutathione (sulfur) is the binding site for the xenobiotic:

Source: The role of glutathione-S-transferase in anti-cancer drug resistance

GSTP1 has a wide range of physiological functions: It is involved in metabolism, detoxification and elimination of potentially genotoxic foreign complexes, metabolizes a variety of carcinogenic compounds, and protects cells against DNA damage and canceration.  However, while GST mediates detoxification from accidental xenobiotics, like exposures to pesticide for example, GSTs have also been implicated in the development of resistance toward chemotherapy agents, especially platinum-based chemotherapy drugs. (GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review))

Here are several more genetic terms that will help to understand how GST and GSTP1 work: 

  • Gene expression is how GST directs the manufacture of GSTP1 (for more on how gene expression works, check out this article)

  • Methylation is a chemical modification of DNA and other molecules that may be retained as cells divide to make more cells. When found in DNA, methylation can alter gene expression. In this process, chemical tags called methyl groups attach to a particular location within DNA where they turn a gene on or off, thereby regulating the production of proteins that the gene encodes. (National Human Genome Research Institute)

  • Polymorphism, as related to genomics, refers to the presence of two or more variant forms of a specific DNA sequence that can occur among different individuals or populations. The most common type of polymorphism involves variation at a single nucleotide (also called a single-nucleotide polymorphism, or SNP). Other polymorphisms can be much larger, involving longer stretches of DNA. (National Human Genome Research Institute)

GSTP1 methylation can affect gene expression, inactivating the GST gene.  GSTP1 methylation has been associated with the development or recurrence of prostate cancer (PCa), liver and breast cancers. 

In addition, during detoxification of xenobiotics, GSTP1 may become damaged, causing polymorphism (a variation).  Some polymorphisms are associated with specific cancer types. For example, the genetic polymorphism of GSTP1 may be associated with the detoxification of polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke and exhibits the highest expression in lung tissue.  More polymorphisms of GSTP1 and associated cancer risks are shown in the next table:

Source: (GSTP1 and cancer: Expression, methylation, polymorphisms and signaling (Review)

Therefore, xenobiotics can not only overload the GST detoxification processes, but they can damage GST and the enzymes it encodes, like GSTP1.  Restricting xenobiotics and stress is crucial to keeping this important defense system working optimally!

Here’s a bit more on how these genes detoxify.  Although GST genes do not make glutathione (GSS genes do), they regulate its use.

Glutathione has been described as “the mother of all antioxidants” because it recycles vitamins C and E, which are other antioxidants, and of course it binds and modifies toxins from our environment so that we can get rid of them.  According to Dr. Mark Hyman, “The secret of its (glutathione’s) power is the sulfur (SH) chemical groups it contains. Sulfur is a sticky, smelly molecule. It acts like fly paper and all the bad things in the body stick onto it, including free radicals and toxins like mercury and other heavy metals.” (Glutathione: The Mother of All Antioxidants)

Glutathione (GSH) is a tripeptide molecule consisting of the amino acids glutamate, cysteine, and glycine. It is the most abundant antioxidant in the human body that contains thiol (an organic sulfur compound).  Peptides are chains of 2 to 50 amino acids that are linked together.  For reference, proteins are also chains of amino acids linked together, but these number over 50 and usually more than 100. Here is a visual aid, noting that Glutathione falls under the Peptides category. 

Source: The Difference between Peptides and Proteins

Glutathione exists in two states in cells: reduced (GSH) and oxidized (GSSG).  Oxidized glutathione is actually 2 reduced glutathiones bound together at the sulfur atoms.

Source: Glutathione!

The difference between reduced and oxidized glutathione is that GSH (reduced) is the “recharged” version, while GSSG (oxidized, also called glutathione disulfide) is the “spent” version. GSH is also called “free glutathione” in that it has its sulfur site ready to bind to xenobiotics, while the site on the spent version is not available because it’s stuck to another glutathione molecule. 

The body is constantly recycling glutathione from the oxidized to the reduced version (for more on how this happens, this video is really helpful) .  Healthy cells at rest have a GSH/GSSG ratio >100:1, meaning that there is much more GSH (recharged) available than GSSG (spent).  When cells are exposed to oxidant stress such as xenobiotics, the ratio can drop to 1:10. This is very dangerous, because depletion of GSH and accumulation of GSSG is actually directly toxic to cells, causing their death (apoptosis).  (Glutathione!)  

Glutathione (GSH) production also drops with age and disease. Unfortunately you can’t just “pop a pill” for more GSH (contrary to many medical claims on the internet!). The body, however, can  make its own GSH in the liver with the amino acids cysteine, glutamate, and glycine. The best ways to boost our bodies’ manufacturing of GSH are to eat foods rich in glutathione or its building blocks (amino acids of cysteine, glutamate, and glycine), increasing your intake of vitamin C, and getting enough sleep and exercise.  (10 Natural Ways to Increase Your Glutathione Level)

Here’s a recap about GST, GSTP1, and glutathione:

  • GST is the gene responsible for encoding GSTP1.

  • GSTP1 is the enzyme that regulates the ability of glutathione to bind to xenobiotics.

  • Glutathione is an an enzyme that exists in 2 forms: GSH (reduced) and GSSG (oxidized).

  • GSH is also called “free glutathione” and in healthy cells, exists in a 100:1 ratio with GSSG.

  • Xenobiotics are those chemicals to which we are exposed that come from outside our bodies.  POPs (persistent organic pollutants) are xenobiotics.

  • GSH binds with xenobiotics in the presence of the GSTP1 enzyme.

  • GSSG cannot be used to bind xenobiotics, it first must be converted back to GSH.

  • Stress and xenobiotics are dangerous in that they can cause changes to GST and GSTP1 which affect their ability to detoxify our bodies, making the body prone to cancer.

  • Unchecked stress and xenobiotics also overwhelm free glutathione, causing cell death.

  • We can help restore proper glutathione balance and immune function by limiting stress and xenobiotics, eating the right foods for manufacture of GSH and getting enough sleep and exercise.

Photo by Al Elmes on Unsplash