Monthly Archives: February 2024

So you’re in the market for a new car? With or without New Car Smell?

So you’re in the market for a new car?  With or without New Car Smell?

If the idea of driving a new car is appealing, you may need to educate your nose to accept that the new car smell is not a good thing.  Thankfully, many automakers are becoming conscious of the dangers of volatile organic compounds (VOCs) that compose most new car smells, and are taking steps to reduce them.  Not a small driver for this is the new car market of China.  Over 11% of buyers in China complained about the odors they found in their new cars, according to the 2019 JD Power China Initial Quality Study. (The Self-Poisoning Car)  Apparently, Chinese prefer for their new cars to have no smell at all, which makes sense due to their genetics.  Many Asians possess a less functional acetaldehyde dehydrogenase enzyme, which is responsible for breaking this VOC down, therefore they may be especially susceptible to its allergenic effects. 

When you know about what is in the “new car smell”, you might not be too disappointed when it fades away!  Most of the smells are due to VOCs, some toxic ones at worst.   The sources are varied:

  • Residual compounds from the manufacturing process and material treatment of different interior components and textiles.   These include flame retardants (FRs), of which tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency in a 2024 study.  TCIPP was the dominant FR detected in the vehicle seat foam, and air concentrations of this chemical increased with increasing temperature.     
  • Adhesives and carrier solvents that will de-gas – as much as 2kg of adhesive can be found in a modern car, much higher than in the past where mechanical riveting and bolting was more common]
  • Degradation of cabin materials over the longer term as a result of oxidation, ultra-violet light and heat. 

There are no worldwide standards for interior VOCs on new cars, but Asian countries seem to have some of the most well-defined guidelines.  Here are some of them:

Source: The Self-Poisoning Car

Testing VOCs with professional equipment can yield surprising results.  Even in a 1-year old gasoline Hyundai i10 (an economy car produced in India but not sold in the US because it was deemed too lightweight), methanol and acetone rose dramatically as the car stood in the sun for 5 hours, only reaching 68 degrees F.  After the five hour test without the engine on, the car was started, windows rolled up and AC on max with recirculation mode.  This yielded another surprise: some VOCs such as acetaldehyde rose steeply during the fourth to sixth minutes. During this phase acetaldehyde concentrations rose from an initial base of approximately 50 to 550 μg/m3, more than ten times the regulated limit in China and Japan. It was suspected that the air conditioner acted as a “sink” for some VOCs, which was flushing them out during this time.  (The Self-Poisoning Car)

VOCs in cars have even led to a new condition: Sick Car Syndrome (SCS), a phenomenon in which drivers and passengers experience short-term health problems owing to the accumulation of volatile organic compounds (VOCs) in vehicle cabins [1], [2] and is particularly prominent in new rarely used cars. The symptoms of SCS include irritation of the eyes, nose, and throat, headaches, and dizziness, among other symptoms, with potential long-term health consequences.  (Elevated volatile organic compound emissions from coated thermoplastic polyester elastomer in automotive interior parts: Importance of plastic swelling)

Some solutions from automotive material suppliers include: 

  • UK company Aqdot has introduced the product Aqfresh, which is a powder composed of barrel-shaped molecules with a hollow hydrophobic cavity and polar portals, enabling them to tightly bind a wide spectrum of unwanted molecules.  Aqfresh can be applied to textiles via dry impregnation, as well as by spraying and padding during the finishing process.  It can also be incorporated via compounding or polymer masterbatch into rigid plastic parts such as dashboards and other trim pieces.  
  • 3M has developed low VOC adhesive tapes and a water-based spray-on adhesive (no VOCs) that meet the Japanese Automobile Manufacturers Association (JAMA) standards for nine substances with defined limits for vehicle indoor air quality (VIAQ).  
  • POM is an acronym for the chemical name polyoxymethylene. It is generally referred to as polyacetal or acetal resin.  POM has a number of applications in cars where it replaces metal such as door locks, fuel system parts, door rollers, and clips to hold trim in place.  It has properties of durability, oil and chemical resistance, and self-lubrication.  However, traditionally POM was a source of formaldehyde.  Polyplastics has developed a number of grades of POM that are low-VOC in its DURACON® POM LV Series

Although there are some brands that historically have higher customer ratings for interior air quality (like Honda), the last comprehensive survey of new car VOCs was in 2012, and recent reports by individual automakers regarding interior VOCs are very hard to find.  You can definitely call individual manufacturers and inquire about VOCs while shopping, but when it comes down to deciding,it’s best to see/test cars in person:  What you see in a “floor model” may not be what you get in your delivered car, either, since a 2007 study showed that interior VOC emissions varied greatly between makes, models and trims and even within the same make/model/trim.

You can do a lot to rid your car’s interior of most of its VOCs. Here are some tips to do it (How to Get Rid of That New Car Smell (Step by Step))

  • Heat, ventilation, and time are certainly the main ways to offgas a vehicle. You can heat it by putting it in the sun, by running the heating system, or even with space heaters (very carefully in a small space).  When you are heating materials you are releasing the VOCs and also creating new VOCs (this study explains), so make sure when you are heating up the new vehicle you are airing it out substantially at the same time so that the gasses have somewhere to go.  Windows should be open while you are heating the vehicle. Windows can also be left open anytime it’s safe to do so.
  • Deep clean the vehicle with non-toxic products:
    • You can use AFM Carpet Shampoo to deep clean carpets and upholstery; just make sure not to soak these surfaces in order to extract all the water and prevent mold growth.
    • Vacuum frequently with a HEPA vacuum.
    • Wipe down hard surfaces with disposable cleaning cloths so that you can throw them away after picking up dust, which is what many chemicals from the plastic bind to.  TotalClean is a non-toxic cleaner that’s safe for cleaning soft or hard surfaces in the car (again beware of soaking soft surfaces, however, because of the danger of mold and water rings when the material dries.)
    • Use an adsorbent like activated charcoal.  You can cut and place this filter media wherever you want in the car, and even use large pieces of it to cover seats when you’re not using them.  
    • Use an Air Angel all the time; the AHPCO cell is especially good at removing VOCs, and you can use it from your car’s power plugs while driving, or plug it into a wall receptacle via extension cord in your garage.
    • Unfortunately, flame retardants used in the foam parts may continue to off-gas for the life of the parts, so use fresh-air ventilation whenever you are driving and the outside air pollution permits you do so.

If VOCs are not reduced through the heat, ventilation and time method, you can block them using sealants. This really is the last resort, because sealing prevents further offgassing.  AFM makes a number of non-toxic products for this purpose and questions about their best application can be answered by The Green Design Center.

  • Fabric seats and carpet: AFM Lock-Out is sprayed on.
  • Vinyl: AFM Hard Seal is applied in thin coats using a sponge
  • Other Plastic Surfaces: AFM Acrilaq is best applied with a pad applicator in 3 light coats, sanding lightly between coats. .

 

If you’re used to the good old-fashioned “smells” of just fresh air and sunshine, ditching the new car smell should not be hard for you…hopefully it’s the same for whoever else will be driving your new car.  A final option would be to look for a lightly used car from someone with non-toxic habits–just like the price, the VOCs should also be reduced considerably, and even if it was “professionally cleaned” by a dealership, those cleaning chemicals can be removed using the same steps above.  Goodbye, little air freshener trees, hello fresh air!

Photo by Sarah Brown on Unsplash

Better bedroom ventilation = better sleep quality

Better bedroom ventilation = better sleep quality

Have you ever wondered why you’re not sleeping well?  We have quite a few suggestions for better sleep, but there’s one more (invisible) thing that can negate the others: CO2.  Sleeping in a stuffy bedroom does not enable quality sleep!  It turns out that you need “fresh air” even when you’re not conscious of it.  A new study shows that CO2 concentrations in the bedroom above 750 ppm affect your sleep and as a consequence, your cognitive performance is lower the next day.

In the 18-month study, 36 healthy college-age men and women volunteered to sleep for a week each in furnished bedrooms where their sleep was analyzed.  The levels of CO2 varied during the week: the first night was not included in the study (for adaptation), but then two nights each of three ventilation conditions were used to approximate CO2 levels of 750 ppm, 1,000 ppm and 1,300 ppm.  Sleep quality was monitored with wristband sleep trackers.  Salivary cortisol concentrations were measured upon waking also, as elevated cortisol levels correspond with decreasing sleep quality.  Overall, the researchers found that compared with ventilation causing an average CO2 concentration of 750 ppm (fresh air scenario), sleep quality was significantly reduced at the ventilation rates causing CO2 concentrations of 1,000 ppm and 1,300 ppm.  Sleep efficiency was reduced by 1.3 % and 1.8 % and time awake increased by 5.0 min and 7.8 min, respectively. Deep sleep duration decreased at the ventilation rate causing CO2 concentration of 1,300 ppm as compared to 750 ppm along with a significant increase in salivary cortisol after waking, which suggests increased stress and sympathetic activity. 

The takeaway from this study is to try and ventilate your bedroom with fresh air at night to simulate outdoor CO2 levels (450-500 outdoors is normal, up to 750ppm).  Obviously the best way to get fresh air is to open one or more windows, and windows don’t actually need to be fully open to achieve it.  By using a CO2 monitor near your bed, you can experiment to see how wide open 2the windows need to be.  If you live in a quiet suburb or country setting, it’s not too hard to install insect screens and do this.  However, there are lots of areas and circumstances that aren’t so simple!  We want to suggest some products and ways to help.

What if it’s too hot or humid or rainy outside to open my windows?  

  • In this case, the best solution is to install a window air conditioning unit that has a fresh air intake (not all of them do).  If you’re buying a new air conditioner, you may also want to look for one with inverter technology (it dehumidifies the air better and operates more efficiently) and upgraded air filter.  
  • If you have an existing window unit with no fresh air intake, you modify the weatherization around the unit (on the sides or bottom) to allow fresh air to “leak” into the room.  
  • If you have central air conditioning already, you should only need to open the windows about 1” to get enough fresh air to lower CO2 levels below 1000 ppm.
  • If you live in a quiet but rainy area, using a product like the Invisible Awning Rain Guard, $35-40, allows you to open your windows and ventilate, even during a storm.
  • If rain is the problem, here are two window fans that will help:

What if I live in an area with a lot of air pollution, like in a city or near busy roads?

While CO2 is not good for sleep, other types of air pollution like NOx (nitrous oxides) and particulates may be just as bad or worse, so we understand the need for outside air to be filtered.  Depending on the severity of your area, we have two products that can help:

  • The Window Ventilation Filter, $40-50, has an 11” height and reduces dust, dirt and was tested to remove 94% of ragweed pollen.  It also keeps out rain, snow and mild wind.
  • Nanofiber PureAir Window Screens, $40, cover approximately 3-4 average window screen panels.  They are transparent (so your view is not blocked) and use electrostatic adsorption to block particulates.
  • Medify has a great selection of HEPA air purifiers which can be sized according to your room.  All units are equipped with a pre-filter, True HEPA H13 or H14, and active carbon filter.  The active carbon filter is what will remove the VOCs in traffic and industrial pollution.

What if I live in an area where it’s not safe to keep the windows open? 

Security, of course, trumps fresh air…but you can have both if you secure a small window opening with a latch or lock.  It can also prevent children from opening the window too far and falling out.  One thing you’ll need to keep in mind, however, is fire safety; if the window is your safety exit in the case of a fire, you’ll need to make sure the key remains nearby if you lock it.

  • MiniLatches, $69, are pricey but well-made.  They are sized to allow fresh air in but prevent any indoor cats from going out.
  • Stainless Steel Window Chain Locks, $19, are very sturdy
  • Window Security Bars, $50 for a pack of 4, are easily adjustable and installed, and can be used on vertical or horizontal sliding windows and doors.

What if I don’t have a window in my bedroom?

“Fresh air” doesn’t always have to come from windows.  If your bedroom is an interior room, you’ll need to either use the central air conditioning system or create ventilation pathways to bring in fresh air from the rest of the house.

  • If your house is tightly built, it’s a great idea to add a fresh air intake.  Heat recovery ventilators (HRVs) and energy recovery ventilators (ERVs) minimize the heat and humidity losses of bringing in fresh air and exhausting stale air (ERV’s are recommended for more humid climates).  That way, fresh air comes into all parts of the home and having a window to open is not necessary.  For more on HRVs and ERVs, check out our article here.
  • If your room doesn’t have central air conditioning, you can have privacy and better ventilation by adding grilles in the wall or door.  We discuss four options to do it in this article.
  • If you can’t modify the walls or door, you can still have some security by using a Door Chain Lock ($7 for 2-pack) that will allow your door to open slightly and let more air flow in.  

Here’s a pictorial summary of the ventilation recommendations:

Source: Ventilation causing an average CO2 concentration of 1000 ppm negatively affects sleep: a field-lab study on healthy young people

The bottom line is…a lot of our comfort and well-being depends on how well we sleep.  Measure your bedroom CO2 in the morning before exiting (with the door closed) and if it’s above 1000 ppm, research your options for better ventilation.  Ventilate your bedroom tonight for a better day tomorrow!

Photo by Storiès on Unsplash

Materials to Exclude from a Healthy Home

Materials to Exclude from a Healthy Home

Everyone has at least one  “young and dumb” story where they are thankful not to have had more serious consequences from doing something un-wise, to put it mildly.  One of mine is repurposing a chunk of mystery wood for bar-tops in my 1950’s home.  It had a beautiful rustic espresso color and texture; a couple nail-holes here and there, and seemed very hard.  I cut it to length outside, put several coats of clear polyurethane on it and fitted it in place.  Then the headaches began.  For several weeks I could not shake the headaches…and since I was in the middle of finishing the house, I didn’t immediately recognize the culprit.  Suddenly, the “aroma” of creosote came back to me from cutting the pieces of wood.  It’s a potent preservative used for telephone poles and railroad ties, but definitely not meant for interior residential use.  I yanked out those bar-tops and, not one to throw anything out if I could help it, added them to my landscaping in the far corner of the yard.  No more headaches: I learned that creosote is a no-tolerance VOC for me!

The point of this story is that people can become very sensitive to chemicals and VOCs, often by accident, so education is probably our best defense!  Multiple Chemical Sensitivity (MCS) is a condition for anyone that has a reaction to formaldehyde, fragrance, VOCs, etc. and can be self-diagnosed.  One in four Americans suffer when exposed to certain chemicals (25%), and half of those are medically diagnosed with MCS. (One in four Americans suffer when exposed to common chemicals)  

For those of you who are fascinated by the right way to build (and building disaster stories), a  fun podcast to watch/listen to is BS* and Beer, which BS of course stands for Building Science.  I was intrigued by the headline of what NOT to include in my home, and also because the guest speaker is Corinne Segura, author of mychemicalfreehouse.net.  Her website and facebook page are a wealth of information for building a healthy home.  Corinne survived extreme chemical sensitivities in her first tiny home and she has consulted for approximately eight years on building techniques and products, notably for many highly chemically-sensitive people.  Mold tends to underlie these sensitivities, and in Corrine’s experience with this community, MCS has strong links to depression.  Here is her list of materials to avoid:

  1. Two-part spray foam tops the list. It offgasses more than expected (1-3 years), and contains flame retardants (FR).  When substitutions are made with soy and castor oil, these components do not change the offgassing.  VOCs are a major concern.
  2. Vinyl sheet flooring (used frequently in mobile homes) off gases at high rates, it uses plasticizers and may contain phthalates, which continually leach out. Linoleum (which is a natural product) is not vinyl sheet flooring.
  3. Rubber flooring, used for gym floors and especially made from recycled rubber tires, has high off gassing.  Many of us may know this when we get a new spare tire, if it’s stored inside the vehicle or in a trunk that’s not sealed from the cabin.  Phew!
  4. Some carpet: nylon carpet has high off gas levels.  Glues used for glue-down and padding also offgas.  Flame retardants and stain-proofing, which contain PFAS, can also be included.  However good carpet is zero-VOC.  There are very good wool, polyester and a nylon brands available.
  5. Some caulking and sealants: liquid asphalt and hot-mopping (for roofs), butyl caulks and sealants, and polyurethane caulks and sealants are high off gas.  The best types are made of silicone and polyether (however you will need to check warranties for the intended use area), and acrylic caulk has the next lowest offgas..
  6. PFAS (per- and polyfluoroalkyl substances) are used as stain guard substances, stone sealers, floor sealers and artificial turf.  They are highly persistent in the environment and have health concerns.  If you are chemically sensitive, you’ll particularly need to consider the type of stone you want, because there is not a lot of choice in stone sealers without PFAS (particularly for white stones)!
  7. Oil paints: solvent-based oil paints and primers are high VOC and slow to off-gas!  Water-based alkyd paints are a much better choice.
  8. Solvent-based stains for wood: same as #7.  Unfortunately water-based stains are finicky and the contractor needs to have experience with them.  However, there are natural oil-based stains which are not as harsh (such as tung oil, which can be applied with citrus solvent).  Rubio Monocoat is a plant-based, hardwax oil wood finish that is 0% VOC, durable, matte and keeps the natural look and feel of the wood.
  9. Fiberboards and particle boards are called medium density fiberboard (MDF) and high-density fiberboard (HDF), and are typically high in formaldehyde.  Alternatively, plywood is quicker to offgas. 
  10. Tiles with lead: some tiles test as much as 3x higher than leaded paint!  Cutting and working with these tiles is very concerning, as cutting tile releases more dust than demolishing it. 

Corinne had more advice to offer during the Q&A session. Here are some points:

  • Water-based is not always great because it may have other chemicals in it; it’s best to determine this from the MSDS or use brands that are known for non-toxicity (EarthPaint and AFM Safecoat are two that come to my mind).
  • UV-cured painted surfaces are good because this process is completed in the factory and has limited off-gassing by the time it arrives in the home.
  • Some people adversely react to natural VOCs like alpha-pinene, so natural materials are not always better in terms of VOCs.  You can actually reach a VOC level over CARB in a log house where everything’s made of wood!
  • Canned spray foam is actually way better than 2-part spray foam because it’s 1 part, it’s thinner, way smaller amounts.  
  • What makes a vinyl plank “luxury” (also called multi-layer rigid planks), besides marketing?  It has several parts to it: an SPC core (limestone-vinyl plasticizers in the core) with vinyl on top and cheap foam underlayment.  They are mainly zero-VOC and not on the “unhealthy” list. 
  • Some “antique” products like pressed-wood kitchen cabinets from the 1960’s have usually finished off gassing, but 40-60 year old vinyl flooring may still leach phthalates chemicals (forever). 
  • In her estimation, ventilation is way more helpful than air purifiers and Corinne would spend her money on ventilation strategies (ERV, HRV) before air purifiers.  These ventilation strategies, according to one of the hosts of the podcasts, work well even with “leaky” houses.
  • Furniture foam is a different substance than 2 part spray foam.  It contains polyurethane, which has plasticizers but not flame retardants (phased out).  Only natural latex is a good substitute for polyurethane foam, but it’s not that much of a difference to chemically sensitive people because both have some off-gassing.
  • Epoxy coatings are similar to the concept of 2 part spray foam if they are not mixed properly; they can offgas for some time and may have BPA.  

Corinne advises that if you are chemically sensitive, you should compile a list of your sensitivities and use a consultant who is able to specify materials for these needs, instead of just telling them “I have MCS, I need a chemical-free house”.   Since she was not currently consulting at the time of the podcast (early 2024) , she advises that Andrew Pace, Paula Baker-Laporte and Caroline Blazovsky are three that are expert consultants in this area.  She does, however, answer every question sent to her website.  Ask away and avoid, shall we say, “uninformed” mistakes!

Photo by Storiès on Unsplash

Tenant Rights to a Habitable Home: Mold and Smoke Issues

Tenant Rights to a Habitable Home: Mold and Smoke Issues

What can a renter do when their home becomes “inhabitable” due to mold or second-hand smoke?

When tenants sign lease agreements with building owners or landlords, they agree to abide by certain rules while living at the property, which protect both the tenant and the landlord.  In the US, certain tenant rights are protected under federal, state, and local laws.  For the purposes of this article, we are going to examine a tenant’s right to a habitable home.  

The “implied warranty of habitability” is the legal term for a renter’s right to a home that keeps out rain and snow, has sufficient hot water and heat, sturdy walls and floors, free from environmental dangers such as lead, asbestos and mold, and reasonable protection from criminal intrusion.  According to Nolo.com, all states except one (Arkansas) recognize the implied warranty of habitability.  Even if a landlord offers lower rent in exchange for the tenant “waiving” habitability rights, such waivers are typically not upheld in court.  There are differences between habitability problems and “minor repair” problems, though, so that landlords are not legally required to fix every problem that elicits a complaint. 

For purposes of safety and air quality, some habitability problems may be:

-a roof leak or plugged air conditioner drain that results in moldy walls

-improperly vented water heater that causes exhaust gasses to leak into the apartment/home

-neighbors that do things that cause you to be unhealthy, like smoke inside, make a lot of noise during sleeping hours, etc.

If the landlord does not acknowledge or repair the problem, there are ways that tenants can enforce the implied warranty of habitability.  If this applies to you, make sure that you have properly notified the landlord and given them time to respond, and then you may want to notify the local building inspector.  Be prepared, however, to move out if the inspector deems the problem causes your home to be uninhabitable!   “Bigger stick” actions for the renter include, depending on state laws:

  • withholding rent
 (make sure you are completely up-to-date on rent before withholding it for habitability reasons)

  • paying for repairs yourself and deducting the cost from the rent
 (also make sure you are completely up-to-date on rent before doing this)

  • sue the landlord, or 


  • move out without notice (break the lease) and without liability for future rent. 

To check whether your state has a precedent for withholding rent or paying for repairs and deducting them from your rent, you can check this page.  Here is more information about these options. 

Specific problems that constitute inhabitable spaces:

Although mold can be a serious health issue, there are no federal laws regarding permissible exposure limits or building tolerance standards for mold in residential buildings, and only a few states and cities have established guidelines regarding mold in indoor air.  (Nolo.com)  Because of the following, it has been difficult for tenants to get landlords to fix or compensate for mold:

  • Mold causes a plethora of symptoms and health problems that are not exclusive to mold

  • Blood or urine tests are the only way to confirm its presence in the body

  • There is are many types of molds present in most homes and rentals, however, only a few have been implicated in serious health issues (such as Stachybotrus Chartrum or Aspergillus)

  • The term “toxic mold” is not a legal term, but the above mentioned species are “toxigenic”, meaning that they can produce mycotoxins.  

There have been successful lawsuits; in 2021 a Florida jury awarded $48 million in a habitability/mold case. (TysonMendes.com)  This is an exceptional compensation, but the vast majority of tenants living with mold that causes health problems do not get any compensation, sometimes due to weak local and state laws on habitability.  For example, in Washington state there are no explicit protections from mold for tenants, and the law doesn’t hold landlords liable when they don’t provide the “mold addendum”. (whyy.org) Here are what legal experts recommend to make your voice heard (based on advice from a Virginia lawyer in this video):

  • Make sure you notify the landlord or owner of the problem in writing and the way prescribed in your lease, and document all communication with them about the problem.  Describe the condition of the area, photograph it, include any lab results and any health effects that may have come from it.

  • If the landlord does not respond or fix the problem, in Virginia you can file an official document called a Tenant Assertion and Complaint.  Definitely check with legal experts on your rights to withhold rent or move out (which as stated above, vary from state to state; withholding rent is not allowed in Virginia).  

  • If you believe health issues have resulted from the mold, it’s best to contact a specialist or personal injury attorney.  

Second-hand smoke and vapors are a serious problem in multi-family dwellings.  This document from the American Lung Association and Public Health Law Center at Mitchell Hamline School of Law outlines tenant rights to healthy air inside their homes, and guidelines on options available to them in California, including:

  1. Approaching the neighbor who smokes/vapes.  They may be unaware of the impact it’s having on you or your family.

  2. Contacting the landlord, if the smoking/vaping doesn’t stop.  Always document your communication with the neighbor or landlord.  

  3. Reviewing your lease and ask the landlord in writing to enforce the non-smoking clause.

  4. Reviewing local laws, as they may have specific requirements to force landlord action. 

  5. California allows withholding of rent, however this could trigger an eviction response from the landlord.  In this case, uninhabitable conditions is a reasonable defense, and if the landlord does evict, the courts will decide whether rent abatement is appropriate. 

  6. Lawsuits include small-claims court, which is used for claims $10,000 or less, and trial court, which in general is only used when there has been substantial harm from repeated, significant exposure to secondhand smoke.  Appropriate charges against the landlord would include breach of contract, disability claims, nuisance claims, covenant of quiet enjoyment, and constructive eviction (if the tenant is forced to move out because of uninhabitable conditions).  

Unfortunately, rights for tenants vary from state to state, but you must do what is healthy for you in deciding whether to stay in or leave an unhealthy home.  We have written another article with specific suggestions if you can’t afford to move out or really want to stay, and mitigate the problem.

Photo by Al Elmes on Unsplash

Are Tiny Homes built from Sheds a Good Idea?

Are Tiny Homes built from Sheds a Good Idea?

At least every other day, I see an ad for a tiny home or office that companies or individuals built from what used to be backyard “sheds”.  Now, don’t get me wrong, I am all for repurposing buildings and materials, when they are done the right way!  (In fact, I even repurposed a large metal workshop building into a 2 bed/1.5 bath “condo” for my parents.  This one is on a concrete slab and for all intents and purposes, could have been built that way as a home). What are the advantages, and what are the cautions, of making a home from a shed?  (Many great points adapted from Living in a Shed: 9 Things (2023) You Must Know):

The advantages to living in a tiny home are many, for example:

  • Up-front cost is cheaper than a house
  • Smaller utility bill
  • Less square footage to clean
  • Less impact on the environment
  • Privacy
  • Portability
  • Customization
  • Ability to live in nature or “off-grid” more easily

However, “sheds” are only a subset of tiny homes, specifically, tiny homes that started out as prefab backyard buildings.  Let’s take a look at what could go wrong from making one of these into a habitation.

First of all, when considering whether to build out a shed as a home, you should check into local building codes.  If you live within city limits, there are likely laws about what type of buildings can be built or placed on your property to become “habitations”.  Plopping a shed down and running electricity to it for your teenager to live in could be a big problem whenever it’s noticed by the building inspectors!  Moving it to the middle of a few acres in the country doesn’t normally pose these legal issues, but again, it’s best to check with your local building inspector!   If it’s illegal to live in a shed, it may be legal to live in an ADU-an Accessory Dwelling Unit.  For example, ADU’s in California are required to be at least the size of an efficiency unit (at least 150 sq. ft. livable space plus a bathroom), they must contain a kitchen, a bathroom, they must be built on a permanent foundation, and must be able to turn on/off the ADU utilities without entering the primary unit.  (ADU vs Finished Shed Comparison)

Construction: This is the largest area of caution we see.  Within this topic, we need to highlight: 

  • Off-gassing of toxic compounds from interior building materials.  If the building was never meant for habitation (even as a chicken coop!), then it may contain building materials that are rated for “outdoor use only” which may give off dangerous pesticides/weatherization chemicals.
  • Inferior flooring and framing techniques:  We’ve seen them: sheds built to hold push lawnmowers and Christmas decorations may not hold up to daily living over a number of years.  Holes or loose joints that develop inevitably allow pests to come in (they want to be cool/warm/fed too!).  
  • Inferior foundation: Setting a shed on a few cinder blocks is typically not sufficient for daily living and if the floor begins to sag, all kinds of structural issues (including leaks and mold) can ensue. 
  • Poor insulation:  Typically, storage sheds only need to keep the paint from freezing, not keep a person comfortable, so insulation may not be optimal.  This includes roof and floor insulation–yes, if your shed is not mounted to a slab foundation, it needs to be insulated!
  • Improper sealing (which can cause moisture infiltration and mold growth): If siding is applied over the frame without an air or vapor barrier, it’s easy for moisture to condense inside the walls if they are heated for a living space, or similarly cooled during a hot summer.  These steps in normal construction are what inspectors look for, for the safety of the homeowner and longevity of the building.
  • Addition of water and sewage facilities warrants several considerations:
    • Where is your water source and how will you deal with sewage?  Sewage service is probably the biggest hurdle to overcome, as there are 3 options which may or may not be permitted in your locale: connection to the city’s sewer system, installing a septic tank, or installing a composting toilet. 
    • Plumbing in sinks, toilets, showers and drains also is done by code for a reason–leaks can cause serious mold and hygiene issues.  It’s not a good idea to buy that shed if these appliances are added without proper spacing and materials by someone who knows plumbing code.
  • Addition of power to the shed:  Sometimes power service to a shed (50-100 amp service) is not what you would get for a normal home (200 amp service).  Like the plumbing, wiring the shed for power should be done by someone who knows electrical code, so that it’s wired safely!
  • Addition of HVAC to the shed: Sticking a “window unit” AC or space heater in the side of the shed may keep you cool or warm if it’s the right size, but without proper ventilation, you could build up CO2 and mold very quickly.  CO2 is the product of insufficient ventilation, and face it, a shed is just a small, closed room unless proper ventilation is planned and built-in!  The mold can result from simply living in that closed room, because along with CO2, every human exudes water vapor through their lungs and skin.  If there are 2 people living there, the air quality will be even worse.

So far, it may sound like a major “NO” to use sheds as homes, but that’s just not true.  If you’re allowed to use one in your locale, you can safely do so by starting from scratch (buying a bare-bones model) or buying one from a builder that knows good home construction.  Then you can make sure that the construction, outfitting and customization will work for years to come without causing health issues.  Let’s face it, home ownership is expensive, but saving on a tiny home just to live uncomfortably from lack of weatherization or get sick from mold is definitely not worth the savings.  Therefore, planning is essential!

Photo by Andrea Davis on Unsplash

Tight homes need ventilation, but what do I do when it’s smokey outside?

Tight homes need ventilation, but what do I do when it’s smokey outside?

If you’re blessed to be living in a “tight” home (one that doesn’t allow much unintentional air leakage), you should know that mechanical ventilation is really helpful, if not necessary, to achieve healthy indoor air.  Humidity, CO2, particulates and VOCs can build up inside your tight home and without intentional ventilation, can lead to major mold and health problems quickly.  In this case, many people opt for an ERV or HRV so that the energy savings on their tight home don’t go “out the window” (literally!) by exhausting indoor air and pulling in outdoor air without some kind of energy exchange.   For more basic information on building tightness, ERVs and HRVs, check out our article here.

If you have an HRV or ERV and live in an area prone to wildfires, you should prepare for them by having the proper filters in place and knowing what to do with your system.  We’ve helped several clients prepare for this scenario recently, and the “smoke” was not all from wildfires!  Sometimes neighbors with bad or even innocent habits like smoking, barbequing, or sittin’-round-the-campfire can all wreak havoc on your air quality.

First of all, be familiar with your HRV/ERV unit!  This means knowing where it is, how to change its filters, and how to operate the different modes.  Hopefully the installer did a good job of allowing room for maintenance, because just like a furnace/air handler, the filters must be changed or cleaned regularly in order for the unit to work well for many years.  

Many units only come with standard MERV 8 filters, but these are not adequate to handle smoke.  Smoke presents 2 problems: particulate matter (PM10 and PM2.5) and volatile organic compounds (VOCs).  According to the US EPA, a HRV or ERV unit filter must have a Minimum Efficiency Reporting Value (MERV) of 13 to provide effective protection against particulate matter in the air we're going to breathe inside a home or office building if it's smokey outside. (How to keep wildfire smoke out of homes with mechanical ventilation systems?)  Therefore, you’ll need to know what grade filters are in your unit now, and if they are below MERV 13, inquire with the manufacturer on which filters to upgrade to. 

Before you buy new filters, however, you should consider the other part of smoke: VOCs.  You can have a MERV 16 in your unit, but it will not capture VOCs and your home will be filled with the smell of smoke if there is smoke outside!  These insidious gasses are most easily removed with activated carbon.  Therefore, a layered filter (with MERV13 or more plus activated carbon) is really the best defense against smoke.  Since not all units/manufacturers offer carbon in their filters, here are some other options to get rid of the particulates AND VOCs: 

  • Check our offerings to see if we have your filter size in a MERV 13 filter plus carbon.
  • If not, you can cut and layer activated carbon media behind/under your manufacturer’s MERV 13 filter.
  • ((Some units use “panel” filters which are basically squares of bulk filter cut to fit the unit.  In this case you can cut your own using laminated MERV 13 and carbon media. ))

The following options are adapted from HRV with Smoke Filtration:

  • Ensure there is positive pressure inside the house during wildfire events (some ERVs like Panasonic ERV can be balanced to deliver more air than is exhausted from home) so that smoke never wants to come in “illegally”.  
  • Add an inline fan/filter to the intake of the ERV.  This would generate additional positive pressure without overloading the ERV fan and also filter the air before it hits the ERV.  This one has a MERV 13.
  • Get a local HVAC shop to fabricate a filter box that uses a regular furnace filter with MERV 13 (or higher) and carbon, sized sufficiently to overcome any static pressure concerns, and install it in the fresh air intake before the HRV, OR you can add a media filter cabinet to the fresh air intake of your HRV/ERV and leave out the HRV/ERV filter on that side.  We can help with calculations on sizing the cabinet if you have the model of HRV/ERV available (basically it comes down to airflow/CFM). 
  • Lastly, you could add one or more air purifiers or Corsi-Rosenthal cubes (CR cubes) with HEPA/carbon) to your home.  However, this is not ideal because the pollutants have already entered your home and you’re relying on these purifiers to clean your air, instead of having a “guard” filter at the entrance.

Now, here’s the part which requires discernment: in which mode to use the HRV/ERV.  

According to this article on how to keep wildfire smoke out of your home, the intake dampers of HVAC systems should be closed during wildfire incidents, and the equipment should be configured to only recirculate indoor air.  Before any smoke event occurs, you should check that the intake dampers have seals on them and they actually close tightly.  In case you think that you would run out of oxygen in a very short time in this scenario, that just isn’t the case.  Consider this calculation for 1 person staying in a completely sealed space of approximately 600 ft2; they would possibly die of carbon dioxide poisoning (at 12 days!) before low oxygen would be an issue.  Here’s where having carbon in your filters is also good, because it can also filter out some CO2 from inside your home while you close the outside vent and recirculate.  We think that a CO2 meter is a great thing to keep on hand whether or not your home is tightly sealed, and especially if you have any combustion appliances (like gas stoves, water heaters, furnaces, dryers, etc.)  

(I wouldn’t even worry about this “12 days” deadline, either, because very-tightly sealed homes are very rare!  A home in Alaska currently holds the record for being the world’s tightest home, and the owner/builder took the ingenious route of building a “box within a box” in order to air-seal and insulate it well enough for the climate.  At 600 ft2, it has a rating of 0.05 air changes per hour at 50 pascals of pressure (ACH50).  This is less than 10% of the very rigorous Passivhaus standard, which is 0.60 ACH50.)  

So, recirculating air instead of bringing in outside smokey air has a few benefits:

  • It saves your filters and uses them only to filter the small amount of smoke that leaks in through unauthorized leaks (or briefly opening a door). 
  • It maintains the air quality of the room above that which you would have if you were bringing in outside smokey air.
  • Depending on where the intake filter is located, it could save you cleaning your HRV by not passing unfiltered smokey air through it.

This last point may not be obvious, but not all HRV/ERV manufacturers consider that wildfire smoke is a real threat to the operation of their units, because some have intake filters on the exhaust side of the heat exchanger:

Source: “How ERVs Work”

Do you see the “Fresh air from outside” on the lower left?  Imagine that this is “smoky air from outside”, passing through the fan and then through the heat exchanger, before passing through the filter on the upper right.  All those particulates just passed through a heat exchanger, and it’s likely that some of them get stuck there until they are manually cleaned out. Particles sticking to a heat exchanger reduce its efficiency and depending on their chemical makeup, may damage the surface of the heat exchanger.  Now, placing the filter on the lower left poses a maintenance issue, but it shouldn’t negatively affect the operation of the fan or heat exchanger.  This is why having a separate filter on the fresh air intake before the HRV/ERV and leaving off that top right filter inside the unit, may be the best option in wildfire areas. 

One last point: although we’re not huge fans of completely “smart” homes due to the EMF they emit, if you travel a lot or have an HRV/ERV system installed in a vacation home, it is worth practicing operating it remotely (via an app).  In real emergencies, roads can be closed quickly and if you are not able to get home right away, it becomes the difference between being able to come “home” to a clean house and one that smell like smoke (because even carbon filters will not be able to adsorb VOCs for an extended or intense event).  

Any smoke (cigarette, wildfire, campfire, barbeque, industrial or traffic accidents, etc.) is very unhealthy, so we need to do our best to keep it out of our homes, even at the cost of not ventilating for the duration of the smoke event.  The particulate matter in smoke is especially dangerous for children and people with respiratory or cardiac conditions, because fine particulates can pass from the lungs to the bloodstream. The best line of defense against particulate matter is an airtight building envelope, which by extension means closing the intake dampers of ventilation systems.  Filters with a MERV 13 rating or higher, and activated carbon if possible, should be used in HRV or ERV systems and central air conditioning units so that these units can remove any smoke that gets in.  One or more portable air cleaners with a HEPA filter and carbon are also a very good addition for use in common rooms or bedrooms at night.  It all comes down to preparation…having the filters on hand (or better yet, already installed) and knowing how your unit works is worth a lot of clean air when the smoke suddenly appears around your home! 

Photo by Egor Vikhrev on Unsplash

Marijuana smoke, just like cigarette smoke, is an air quality problem that affects a lot of people.

Marijuana smoke, just like cigarette smoke, is an air quality problem that affects a lot of people.

According to Gallup Polls, approximately 17% of Americans smoked marijuana in 2023, which is up from 12% in 2017-2021.  By inference, approximately 83% of Americans don’t directly smoke marijuana, for any number of reasons, but a good number of them deal with it as secondhand smoke (as evidenced by the number of inquiries we receive about how to protect against/remove it).  

A misguided perception: According to Beth Cohen, MD, MA,  a primary care doctor and researcher in California, her research showed that in 2017, 26% of people thought that it was safer to smoke a cannabis joint than a cigarette daily. In 2021, over 44% chose cannabis as the safer option. People were similarly more likely to rate secondhand cannabis smoke as being “completely safe” compared with tobacco smoke, even for vulnerable groups such as children and pregnant women. (Many people think cannabis smoke is harmless − a physician explains how that belief can put people at risk)  

Yet despite these increasing opinions that marijuana smoke is less dangerous than traditional cigarette smoke,  “Smoke is smoke. Both tobacco and marijuana smoke impair blood vessel function similarly. People should avoid both, and governments who are protecting people against secondhand smoke exposure should include marijuana in those rules.”  -Matthew Springer, cardiovascular researcher and Associate Professor of Medicine, University of California, San Francisco

If non-smokers are in the majority, why are they having to fight for the right not to breathe it?  We can think of several reasons:

  • Conflicting studies done over the last decade have perpetuated confusion.  For example:
    • This 2012 study found that occasional and low cumulative marijuana use was not associated with adverse effects on pulmonary function, specifically air flow rate and lung capacity.  
    • In 2022, Researchers from Ottawa Hospital General in Canada compared approximately 150 lung scans from marijuana smokers, tobacco-only smokers and nonsmokers. The study found that rates of emphysema, airway inflammation and enlarged breast tissue were higher in marijuana than in tobacco smokers.  The scans showed that 75% of the marijuana smokers had emphysema. Slightly less than 70% of tobacco-only smokers had emphysema, while only 5% of nonsmokers had it. Emphysema, a form of chronic obstructive lung disease (COPD), is the third leading cause of death in the U.S. (Smoking marijuana may be more harmful to lungs than smoking cigarettes, study finds)
  • Tobacco giants Altria and Reynolds American together with convenience store retailer networks have invested billions into the marijuana industry and actively support legalization.  They produce and market products that support both tobacco and marijuana, like e-cigarettes and vape pens.  (Protecting Nonsmokers from Secondhand Marijuana Smoke)
  • Have societal norms flip-flopped?  Less than 20 years ago, cannabis users were advised to be “discreet”, but with widespread legalization, that’s no longer applicable.  Furthermore, you could say that those who don’t smoke are now being pressured to be discreet!.  Included in the 2008 paper “Civic Norms and Etiquettes Regarding Marijuana Use in Public Settings in New York City” is a resource from the Cannabis Action Network’s 2005 “Good Neighbor Guidelines” promoting both marijuana use and etiquettes: “Have fun with cannabis, but in your neighborhood keep a kind, discrete, polite profile. Do not consume your cannabis openly. The fewer people who know you have cannabis around, the smaller your exposure to rip-offs, overeager youths, cops, and mooches. Keep cannabis plants hidden from public view. Avoid actions that would lead to nuisance complaints like ... overly loud music or too many freaky parties.... Do not keep your stash and paraphernalia in plain view of the doors or windows. Take measures to minimize the distinct odors cannabis has when grown, smoked, or just sitting around.”

Whether it comes down to money or public opinion, we’re finding that people who do not want to inhale second-hand marijuana smoke have to fight for that right, despite some disturbing facts (Secondhand Marijuana Smoke Fact Sheet):

  • Particulate levels from secondhand marijuana smoke are even higher than particulate levels from secondhand tobacco smoke. A study comparing indoor particulate matter 2.5 (PM2.5) levels from secondhand marijuana smoke and secondhand tobacco smoke concluded that “the average PM2.5 emission rate of the pre-rolled marijuana joints was found to be 3.5 times the average emission rate of Marlboro tobacco cigarettes, the most popular US cigarette brand. 
  • Significant amounts of mercury, cadmium, nickel, lead, hydrogen cyanide, and chromium, as well as 3 times the amount of ammonia, are found in mainstream marijuana smoke than is in tobacco smoke.  (A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions)
  • One minute of exposure to marijuana SHS (secondhand smoke) substantially impairs endothelial function in rats for at least 90 minutes, considerably longer than comparable impairment by tobacco SHS. (Endothelial function is the way blood nourishes surrounding tissues via the endothelium, the single-layer cells that line our blood vessels). The findings in rats suggest that SHS can exert similar adverse cardiovascular effects regardless of whether it is from tobacco or marijuana. (One Minute of Marijuana Secondhand Smoke Exposure Substantially Impairs Vascular Endothelial Function)
  • And many more…

So how do people who don’t want these health risks overcome them?

People living in multifamily buildings, whether they are apartments or condos, frequently have problems with this issue, because: the units are commonly leaky, landlords are reluctant to impose sanctions on smoking tenants who are otherwise ideal habitants, and in many states, it’s expensive and risky to bring about legal action. Therefore, it’s the burden of the non-smoker to either “prove” the harm or mitigate the problem on their own.  

In response to our own clients’ problems, we’ve done some research and want to try to help “clear the air”. 

Testing: Since marijuana smoke produces even more particulates than tobacco smoke, tenants with neighbors who smoke or vape marijuana could invest in a particulate monitor like the PurpleAir (or similar) in order to establish a history of particulates. A study used a PurpleAir monitor (PurpleAirTM Model PA-II, PurpleAir.com) alongside expensive lab equipment to show that PurpleAir is just as effective to show secondhand PM2.5 exposure to marijuana aerosol from vaping.  The benefit of using such a monitor is that data is uploaded to the internet every 2 minutes, so that a history can be established.

In addition, if the smoke is particularly heavy or your apartment is particularly leaky, test kits can be used to discover THC residue in your space (THC Surface Residue Detection Test by Mistral, $10, THC Surface Residue/Vape Oil (Pouch) Drug Test, $10)  More expensive laboratory test kits could be used if necessary: EMSL has Marijuana Smoke Contamination Test Kit that costs $95 for lab analysis upon return.  A terpenes test kit from LCS Laboratory is $200-300. The marijuana plant contains a high concentration of terpenes that are responsible for the characteristic smell of marijuana products. Terpenes are natural organic compounds that can be found in most plants, industrial solvents (as turpentine), and many cleaning supplies with the floral or citrus smell.

Cleaning: Due to the chemicals left behind by marijuana smoke, personal protective gear should be used depending on the severity of the residue::gloves, eye protectors, respirators and possibly Tyvek suits are all standard for professional cleaning crews..The best non-toxic cleaners seem to be SmokeOut and THC-Ya:

  • SmokeOut Cannabis RTU Spray by EcoClear is safe for people, pets and wildlife as per the company’s policy.  It neutralizes cannabis odor on contact.  $20/32 oz. from this distributor.
  • THC-Ya! By MoMar is an enzymatic cleaner compatible with hard and soft surfaces.  It encapsulates and neutralizes odors on contact while built-in detergents and beneficial bacteria destroy and remove the source of the odors. 100% biodegradable, no dyes, no solvents, and no phosphates. Non-flammable, non-corrosive, and non-toxic.

According to Restoration and Remediation Magazine, there are several other options for deodorizing and deep-cleaning soft surfaces: hydroxyl generators or ozone machines.  Their preference was hydroxyl generators.  However, both hydroxyl generators and ozone machines have drawbacks.  They may cause more harm than good by generating oxidant byproducts. In a 2021 study, hydroxyl radicals generated by a device reacted with volatile organic compounds present in the indoor space. This led to chemical reactions that quickly formed organic acids and secondary organic aerosols that can cause health problems. Secondary organic aerosols are a major component of PM2.5 (particulate matter with a diameter smaller than 2.5 mm), and exposure to PM2.5 has been associated with cardiopulmonary diseases and millions of deaths per year. (Joo et al.)

Regarding ozone machines, ozone reacts with tetrahydrocannabinol (THC) to produce at least three new oxidant products, from concentrations of ozone as low as found in the natural air.  Therefore, using an ozone generator could increase these byproducts. (Science Daily)  Another study by Berkeley Lab’s Indoor Environment Group found that ozone can remove nicotine and polycyclic aromatic hydrocarbons (PAHs) that had adsorbed onto fabrics after smoking, but that people need to wait a few hours after the generator has run and allow the space to be ventilated of new contaminants generated by the ozone, before going back inside. (thirdhandsmoke.org)

Ventilation: Although ventilation with fresh outside air does dilute contaminants,ventilation does not eliminate all the poisonous toxins and chemical components of secondhand smoke.  The Board of Directors for the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE), the international standard-setting body for indoor air quality, unanimously adopted an important position statement on secondhand tobacco smoke at its summer 2005 conference.  ASHRAE Standard 62.1 reaffirms:

  • There is no safe level of exposure to secondhand smoke.
  • Ventilation and other air filtration technologies cannot eliminate all the health risks caused by secondhand smoke exposure.
  • Tobacco smoke does not belong in indoor areas.

In 2013, the Standard was amended to state:

  • Marijuana smoke should not be allowed indoors.
  • Emissions from electronic smoking devices should not be allowed indoors.

The “ASHRAE Position Document on Environmental Tobacco Smoke” was again approved.  According to this position statement, “ASHRAE holds the position that the only means of avoiding health effects and eliminating indoor ETS exposure is to ban all smoking activity inside and near buildings.”  (Protecting Nonsmokers from Secondhand Marijuana Smoke)

Air purifiers: Our most effective products against these types of contaminants are the Upgraded Air Angel Mobile and Activated Carbon Filter Media; the Air Angel’s AHPCO cell and the media are most potent against VOCs.  Our Germ Defender and Whole Home Polar Ionizer (installed in central AC) work to reduce particulates by causing them to clump together and fall on surfaces, where they can be more easily cleaned.  If you have a central air conditioning unit, you can also use our Whole Home Filters with Activated Carbon to filter and deodorize, setting the fan to “on” so that it’s always filtering.  We also recommend standalone HEPA filters like Medify Air Purifiers (sized for your space).

We get you and have written on how to walk the fine line of dealing with neighbors’ health hazards.  Just like your rights to a habitable home free from mold, tenants should also have a home free from secondhand smoke.  No-smoke.org has similar good suggestions about communicating with smokers and landlords, as well as a new one: getting a note from your doctor!  You can never have too many allies in this fight for clean air, and we want to help as much as possible.

Photo by Ahmed Zayan on Unsplash

How to make your home less susceptible to flooding

How to make your home less susceptible to flooding

Weather forecasts for rain can strike fear in homeowners.  Different parts of the world are experiencing rainfalls that surpass a year’s average within just a few days, or even a few hours.  What can we do to lessen the chance of having to use mops, pumps, demolition and expensive contractors in the aftermath?  

There’s nothing like firsthand experience.  There is an area in Laval, Montreal that historically never flooded, yet in recent years received two “one-hundred year” floods from the Ottawa river.  Andrew Henry is a homeowner who fought very hard to keep his home from flooding for the 2nd time in April/May 2019.  He described his flood prevention/mitigation steps in a series of videos, categorizing them into three main parts:

  1. Keeping the river out of your house:  Sandbags and plastic sheeting are the primary defense for this, adding reinforcements to the back of the sandbag wall where necessary (sadly, they can fail if the water gets too deep).   You may want to keep plastic sheeting and tape on hand at the minimum if authorities in your area supply sandbags.
  2. High water table: Super-saturated soil around your foundation will seep in any cracks in the walls.  
    • In an emergency, you can dig down outside your foundation and set up sump pumps to act as temporary “french drains”.
    • You can also break the floor inside your lowest level at strategic points to install sump-pumps.   This involves a concrete saw and/or jack hammer in most cases, so preparation is key!  If you live in an area prone to flooding, it’s also wise to have spare sump-pumps on hand, along with tubing/piping for expelling the water away from the house, and plenty of extension cords. 
    • Have an emergency power source (small generator) to keep your sump pumps going even if the power fails!
  3. Drains inside the home: you can sand-bag them closed but ideally have sump pumps at the ready or installed in the drains.  For toilets, the best thing you can do is remove the toilet and install a toilet plug (see minute 1:00 in this video).  Andrew did not say it, but chances are that he immediately removed all carpeting/rugs from the ground floor (if he had rugs) in order to clearly see where any water comes in.

There are a lot of great tips in the videos of what he learns as he goes, and his determination pays off, and one month later he can remove the 8 tons of sandbags.  Other seriously flooded homes survived also!  See this house at minute 3:45

City planners and inspectors sometimes have good advice too.  Here is a helpful video from the City of Toronto that suggests the following:

  • If you have any trees running near your sewer line, it may be worth getting a plumber to scope the sewer line to see if tree roots have infiltrated or broken the line, which can cause backups of sewage into your home, even without flooding.  If you don’t have a sewer cleanout, this is also the time to have a licensed plumber to install one.
  • Foundations need to be maintained.  This kind of work includes:
    • Repairing cracks and gaps promptly.  If you have never used it, hydraulic cement is a great product.  You can use it to patch any visible cracks when the walls are dry, and keep the rest of the tub for emergencies, because it even works to seal water out when wet.  It sets extraordinarily fast (3-5 minutes) so you should only mix and use a small amount at a time. 
    • Regrading the soil around your home so it slopes away, not toward the foundation
    • Get a licensed foundation contractor to upgrade your foundation flood protection (see below)
  • Declutter your gutters:  Gutters are important because they direct water off the roof and through the downspout, away from the home.  If they are blocked by leaves and debris, water will pour over them and down the walls of your house.
  • Make sure that downspouts are directed away from the foundation, and discharge at least 2 meters (about 6 feet) from the foundation.

According to the Natural Resources Defense Council (NRDC), some ways to flood-proof your house involve researching flood plain maps before you buy your home (but with storms that break historic precedents, even that doesn’t always work), buying flood insurance, and considering relocating.  Of course, if you really like where you live or can’t move, they also suggest the following:

  • Install a sewage water backstop:  If your basement floor drain backs up after heavy rains, consider getting help from a licensed plumber to install backflow prevention valve(s) and other devices to keep overtaxed sewer mains from backing up into basements.
  • Changing your landscaping includes the following: 
    • Digging depressions known as swales to channel stormwater runoff away from your foundation.  Swales carry water in a non-erosive way.  They can have river rocks or water-loving plants.  
    • Converting concrete or asphalt driveways to gravel or brick
    • Using absorbent mulch can help manage heavy rain and reduce potential flood damage. 
    • Placing a rain barrel beneath a gutter downspout 

Although rain gardens can be used in dry areas to manage water runoff, they can also be used in flood prone areas to lessen the chance that storm drains will become clogged and overflow, leading to flooded properties.  They are depressions made and planted with water loving plants that can absorb large amounts of water and drain it slowly.  If you are able to motivate your neighbors to do the same, the effects are multiplied and can save thousands of gallons of water from pooling or flooding the neighborhood.  Here is a great video showing where and how to make a rain garden.

If grading your lawn and maintaining the gutters and downspouts is not enough to keep your ground floor or basement dry, you may need to have foundation work done.  This can involve setting french drains inside or outside the basement or ground floor, applying a sealant to the exterior of the basement walls, and/or a last resort, waterproofing the interior of the walls.  The reason we mention this as a last resort is because waterproof paint is not a replacement for good drainage–it simply can’t hold back a large amount of water for a long time (check out our article here).  Also, waterproofing should never be installed on both sides of a wall, because it needs to be able to dry out from one side.  Since foundation work is costly and intrusive, it’s best to get plans and quotes from several reputable companies before proceeding.   

Flood conditions can rise very quickly, so there is no substitute for planning and supplies.  Here’s to hoping that you are able to stem the flood/tide and keep your home dry this spring, and all year long!

Photo by jim gade on Unsplash

What does living near a farm mean? It’s not all cute baby animals.

What does living near a farm mean?  It’s not all cute baby animals.

I didn’t grow up near a farm, but I spent a lot of time on one.  My mother’s uncle was a farmer who raised soybeans, corn, a few pigs and an extensive home garden.  Although my sister and I had to shell a lot of peas and shuck a lot of corn, we also got to play on the hay bales and jump in the soybean pile when the adults weren’t looking.  Farms through the eyes of a child are wonderful until we really learn what makes the garden grow (and not be eaten up by pests). 

I feel for farmers.  They are at the mercy of the weather (which has been crazy during the past few years) and pests, as well as an economy that expects perfect specimens of fruits, vegetables and meats delivered to their front door (literally) for the cheapest price possible.  Although I’m indebted to farms for providing the food I buy at the supermarket, I wouldn’t want to live near one.  At least not the kind that produces non-organic food for the supermarket, because it takes a lot of pesticides, herbicides and fertilizers in order to get that kind of production to a profitable level.   

Application of pesticides is often done by airplane, and low level pesticide vapors that are present in the air linger for days and sometimes weeks after application on food crops. Some pesticides react with sunlight (in a process known as photolysis) to form new chemicals that are more toxic than the original.  (Living Near Agriculture Increases Health Problems)

Many studies show that adverse effects from pesticides can be seen in people living up to one mile away from where they are sprayed.  In rural areas where farms abound, it can be difficult to stay out of this zone, and for the farmer’s family, it’s a fact of life  Some of the diseases which have higher rates surrounding farms include:

  • Diabetes: 21 studies presented at the 2015 European Association for the Study of Diabetes show pesticides increase the risk of diabetes by 61%. 
  • Birth defects: According to this 2001 study, ifpesticide exposure of pre-born babies occurred between the 3rd and 8th week of pregnancy, there was a 40% increase in major birth defects ending in fetal death.
  • Brain cancer: Researchers from the Boston University School of Public Health compared the home locations of approximately 1000 cancer patients to the home locations of 1000 patients dying of illnesses not related to cancer. Results showed that living within 2600 feet of the cranberry growing area resulted in twice the risk for all brain cancers and nearly a 7-fold increased risk for a type of brain cancer known as astrocytoma.
  • Autism: the study, “Maternal Residence Near Agricultural Pesticide Applications and Autism Spectrum Disorders among Children in the California Central Valley”  showd that the risk of having a child with Autism Spectrum Disorder (ASD) was 7.6 times higher than normal if their homes were located within 500 meters (< 1/3 mile) from pesticide treated fields, crops were treated using the pesticides dicofol and endosulfan, and the pesticides were applied between week 1 and week 8 after conception.  The risk of ASD increased with the pounds of pesticide used and decreased with distance from the treated fields.
  • And many more, including infertility, miscarriage, Parkinson's Disease, immune system damage, leukemia, developmental brain damage in children, higher rates of child cancers, non-Hodgkin's lymphoma, autoimmune disorders, arthritis and lupus.

Many of these diseases can be prevented by our body’s own first line of defense, a liver enzyme known as cytochrome P-450. It breaks down pesticides in the blood into a less toxic form. Some people, however, have only 1/3rd the normal levels of these important enzymes, and therefore, would have higher levels of pesticides in their blood for longer periods of time, thereby resulting in more harm from the chemical.  In addition, Glyphosate residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. (Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases)  

What about livestock farms?  Like other industries, farms tend to survive by merging, and the largest livestock farms are termed “CAFOs” for Concentrated Animal Feeding Operations.  CAFOs are agricultural meat, dairy, or egg facilities where animals are kept and raised in confinement. Instead of grazing or eating in pastures, fields, or on range lands, animals are given food.  The animals, feed, waste, and production operations are all confined to a small area of land.  (Environmental Health: Concentrated Animal Feeding Operations (CAFOs))  CAFOs are not all bad: Potential benefits of CAFOs include an economy of scale that affords more efficient sewage and manure management and, in some cases, improved control of some pathogens. For example, trichinosis from pork has been significantly reduced by the improved rodent control made possible by confined feeding operations. (Exploring Health and Environmental Costs of Food: Workshop Summary.)

According to a 2017 commentary, livestock farms–particularly poultry and swine barns–emit large amounts of dust particles from manure, bedding material, straw, animal feed, feathers, skin flakes, and hair.  The dust may be contaminated with bacteria and viruses that are mostly harmless for humans, although pathogenic organisms such as avian influenza virus (bird flu) or coxiella burnetii, the bacterium causing Q-fever, can under certain circumstances be found in the air near farms.  Farm operations also emit a mixture of gasses such as ammonia, an irritant gas that is formed by enzymes in animal waste.  Ammonia is primarily emitted by cattle farms, and by the application of manure to agricultural land.  Ammonia reacts with combustion-derived gases in the atmosphere (primarily from industrial and traffic emissions) to form secondary inorganic aerosols, which contribute to fine dust air pollution. (Is Living Near a Farm Bad for Your Health?)  

A 2021 study found that US agriculture results in 17,900 deaths (range across models: 15,600 to 20,300) per year via reduced air quality, 

  • Damages are driven by NH3 (ammonia) emissions (12,400 deaths; 69% of total) mainly from livestock waste and fertilizer application.  At many beef, pork and dairy facilities, animal waste is stored in massive “lagoons,” such as the one near Herring’s mother’s home in Duplin County. There, the microbes that break down feces release huge amounts of ammonia. Many facilities spray nitrogen-rich liquid waste on nearby farm fields, another source of contamination. (Air pollution from farms leads to 17,900 U.S. deaths per year, study finds)
  • Primary PM2.5 is also a major contributor (4,800 deaths, 27% of total), largely from dust from tillage, livestock dust, field burning, and fuel combustion in agricultural equipment use. 
  • NOx, SO2, and NMVOCs are minor contributors (collective total: 700 deaths; 4% of total). 
  • Areas causing the greatest damages are spatially concentrated, with the top 10% of the most damaging counties (308 counties) together responsible for 8,400 deaths per year (47% of total deaths). These counties are mainly located in California, Pennsylvania, North Carolina, and along the Upper Midwest Corn Belt.

According to a study performed in the Netherlands with 2500 neighboring residents of livestock farms, ambient ammonia concentrations were associated with worse lung function, and people living closer to poultry and goat farms were at increased risk of pneumonia. The location of the study in the southeast Netherlands is very informative, as it is densely populated and also a region of intensive swine, poultry, cattle and goat farming.  As a result of the research, the Dutch government planned to reduce poultry barn emissions by 50% over the following ten years.  

On the bright side, the same Dutch study found that people who lived within about 1,000 feet of livestock were 27 percent less likely to have allergies than those who lived farther away.  Specifically, people living within about 1,600 feet of a pig farm were 37 percent less likely to have allergies than those who lived more than roughly 1,900 feet away. And living no more than 1,300 feet from a cattle farm was linked with a 32 percent lower risk for allergies, the study found.

According to Dr. Alan Mensch, a pulmonologist at Plainview and Syosset Hospitals on Long Island, N.Y., "elevated levels of components of [potentially protective] gram-negative bacteria were prominent in the atmosphere around farms and downwind in areas in close proximity to farms.” These "helpful" bacteria may bolster the human microbiome -- the collection of trillions of helpful germs living in our bodies. And "the less we are exposed to various microbiomes prevalent on livestock farms, the more likely are we to develop allergic diseases," he theorized. (Even Living Near a Farm Might Help Prevent Allergies)

Water quality is also a concern when living near a farm.  Farms can contaminate groundwater by agricultural runoff from poorly managed animal feeding operations, overgrazing, overworking the land (for example, plowing too often), or poorly managed and ineffective application of pesticides, irrigation water, and fertilizer. (Water Contamination)  Therefore, you should get a water test done of any well water on a property near a farm before purchasing, because chemicals could make the water undrinkable, and microbes such as E.Coli could require purification equipment.  

Farms are necessary, for sure, but their use of large amounts of chemicals and densely-packed animals can make them poor neighbors.  Since we can get dangerous pesticides into our bodies without even living near farms (this article tells how one such chemical is ingested and its use being deregulated), are the additional risks that come with living near a farm worth the “peaceful” atmosphere?  It’s a complex question that is likely split between those who have not had serious health issues, and those who have (similar to those sensitive to mold).  Once again, research and divine guidance are the best ways to answer the question for yourself!

Photo by Dan Meyers on Unsplash

Why choosing “Non-Toxic” is not only good for you, it’s good for your grandkids (and great-grands…)

Why choosing “Non-Toxic” is not only good for you, it’s good for your grandkids (and great-grands…)

Hmmm.  

A new study seems to say that the genes we inherit and pass on are not entirely a product of simple reproduction.  They are also influenced by the toxicants we are exposed to by accident, or even as a result of ignorant or uninformed choice.

The title “Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity” is very foreboding and makes me think, how are there any “normal” kids born at all?  

It seems that each generation in the US (and probably world-wide) faces a different main toxin.  For example, the insecticide DDT was a major concern in the 1950s and 1960s, followed by plastics starting in the 1970s, dioxins in the 1960s and 1970s, and then the fungicide vinclozolin and herbicides glyphosate (Roundup) and atrazine in the 1980s (still used).  Researchers used rats to approximate the genetic effects by injecting them with agricultural fungicide vinclozolin in generation 0, jet fuel in generation 1, and then then pesticide dichlorodiphenyltrichloroethane (DDT) in generation 2.  They then continued to breed the rats to generations 3, 4 and 5 to analyze the changes in their genetics and pathologies that presented.  

Some results from the study: 

  • The diseases were not all “additive” meaning that each successive generation had a higher chance of acquiring them, or worse prognosis.  It varied per disease; for example, kidney and ovary pathologies tended to reach a maximum and plateau; however, obesity tended to become more additive with each generation’s exposure to toxicants.
  • Females seemed to be more affected in later generations than males.  
  • Generally, higher pathology was observed in the F4 and F5 generations. 
  • Multigenerational exposure to distinct toxicant exposures promoted transgenerational inheritance of higher disease frequency for nearly all the different diseases examined. 

Wow, given that each generation (and nowadays probably more accurately, each decade) is exposed to new toxicants, we really are stepping through a minefield when deciding where to live, what to do for a living, which personal products to use, which cleaning products to use, and even which food to eat.  The consequences show up not just in our generation–we are reaping what our grandparents sowed and we are sowing for our grandkids.  The same effects seem to be present for electromagnetic fields (EMF), as Barrie Trower, physicist and Royal Navy microwave weapons expert on EMF radiation, has warned (see our article here).  

Finally, I’ll try to end the doomsday thinking with this: “normality” or lack of genetic damage is probably a privilege given that avoiding toxins actually costs A LOT.  Here are some of the headlines that bolster this conclusion:

  • In a 2012 study examining race- and income-based disparities in cancer risks from air toxics in Cancer Alley, Louisiana, cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. 
  • The lack of clean drinking water in Jackson, Mississippi seems to be a complex story of population decline, poverty, racism, politics, mismanagement and theft. (Jackson water crisis flows from century of poverty, neglect and racism)
  •  About 73 million people live within 3 miles of a Superfund site. Compared to the general population, the population within this range is more low-income, has more indigenous and people of color and is more burdened by other environmental stressors (e.g., poor air quality, lead paint, etc.). (Supporting Environmental Justice at Superfund Sites)
  • Most people agree that organic foods are better for your health than non-organic.  However, it costs on average 21% more to buy organic, with the majority of cost difference in meats.  (How Much More Do Organic Groceries Cost?

Despite the socioeconomic barriers to health, I think the best tool for achieving multi-generational health is research, knowledge and a “healthy” skepticism of heavily-marketed products or ideas. Erring on the side of caution is a good thing!  Is there reasonable concern over drinking water purity?  When you can, buy or purify your water. Is there reasonable concern over air quality?  When you can, use a mask or air purifiers.  Is there reasonable concern over food quality?  When you can, purchase the foods that you believe are safe. Genetically, at least, it is true that “The parents have eaten sour grapes, and the children's teeth are set on edge.” Look out for the sour grapes!  Additionally, if you have the means, you can get your DNA analyzed so that you can make lifestyle changes to promote the best outcome in whatever weaknesses are found.  For those who don’t have the means to buy an analysis, there are studies and trials that may be free.  Thankfully, DNA tools are no more the exclusive domain of the scientific research community, so the news doesn’t have to be all bad.  

Photo by ANIRUDH on Unsplash

“Rust” in your sinks and toilets? Iron in your water can mean iron bacteria in the water

“Rust” in your sinks and toilets?  Iron in your water can mean iron bacteria in the water

Wait–is that rust in my toilet?  Why is the toilet looking rusty?  You might initially think that the pipes supplying the water might be rusting, and that could be a problem (however, it’s rare).  But if you know that there are no iron pipes supplying your water (if you live in the country with your own well), then you know that pipe rust is not the source of the problem.  Most likely it has to do with high iron content in the water itself, and a certain bacteria that consumes iron. At least 18 types of bacteria are classified as iron bacteria, long thread-like bacteria that “feed” on iron and secrete slime. Unlike most bacteria, which feed on organic matter, iron bacteria fulfill their energy requirements by oxidizing ferrous iron into ferric iron. (Iron Bacteria in Surface Water). 

Iron bacteria are small living organisms that naturally occur in soil, shallow groundwater, and surface waters. These bacteria combine iron (or manganese) in the soil, and oxygen to form deposits of "rust," bacterial cells, and a slimy material that sticks the bacteria to well pipes, pumps, and plumbing fixtures.  These iron bacteria don’t cause disease, but they can create an environment where other disease-causing microbes can grow (like coliform bacteria).  Iron bacteria can get into the well when the water in the well comes into contact with the soil surrounding it, or lakewater, or any rivers and streams.  (Iron Bacteria in Well Water)

If you haven’t had any work on your water system done, and you’re still suspecting the bacteria are feeding on iron pipes, here are the most common types of pipes (from 7 Types of Plumbing Pipes Used in Homes):

  1. Rigid copper pipe (water supply)

  2. PEX pipe (water supply)

  3. PVC pipe (water supply and drains)

  4. ABS pipe (drains and vent lines)

  5. Flexi Pipe (water supply)

  6. Galvanized steel and cast iron (outdated for water supply and drains)

  7. Black pipe (only used on natural gas lines)

So, you can see that out of the 5 water supply line types, only 1 has iron in it (#6) and those are considered outdated.  The cast iron and steel pipes that were used in the 1950s have gradually been replaced by one of the other plastics mentioned above.  (A Brief History of Pipe Materials)  Therefore, if your home was built after the 1960’s, it would be very common for you to have iron in the water supply lines. 

Other than causing brown stains, iron bacteria can also cause the following (Iron Bacteria in Well Water):

  • Smells: Swampy, oily or petroleum, cucumber, sewage, rotten vegetation, or musty smells, which may be more noticeable after the water has not been used for a while.

  • Colors: Yellow, orange, red, or brown stains and colored water, or a rainbow colored, oil-like sheen.

  • Deposits: Sticky rusty, yellow, brown, or grey slime, or “feathery" or filamentous growths (especially in standing water).

These are not the kinds of things you want to see in your sink or toilet!  It can also have detrimental effects on any water softening system, making the water running through it to have an off taste.  To confirm that the problem is iron bacteria, you can get the water tested by a lab.

If you do have iron bacteria, and states like Minnesota have a lot of it, it can be hard to get rid of.  Here are some steps you may consider: 

  • If you have a heavy concentration of iron bacteria, the best first step is to have the contractor remove and clean the pumping equipment, and scrub the well casing with brushes.  Make sure that they do not lay any of the equipment on the bare ground, as this could re-contaminate it!  

  • Next is chemical treatment, which is also for minor contaminations.  Treatment involves 3 steps: disinfection (or oxidation), retention time, and filtration. (How to Remove Iron Bacteria in Your Water)  Chlorine (bleach), hydrogen peroxide and ozone are frequently used.  Although many companies call all three of these “disinfectants”, the fact is that only chlorine is a disinfectant; hydrogen peroxide and ozone are oxidizers.  Disinfection is the act of killing bacteria, while oxidation causes a molecule, atom or ion to lose an electron (which also kills bacteria as a consequence).

    • Chlorine (bleach): Although bleach is cheap and will disinfect, its reactions to organic matter that may be in the water are not good–like haloacetic acids (HAAs) and trihalomethanes (THMs), which are classified as possible human carcinogens.  For more information on these byproducts, check out our article here.  

    • Of the two remaining, ozone is a stronger oxidizer than hydrogen peroxide, but hydrogen peroxide systems are less expensive and more readily available from water treatment companies.  According to USWater, extreme amounts of iron and hydrogen sulfide can be removed from the water supply effectively and consistently, it does not need a “contact tank” for retention time, and it does not cause maintenance issues with injection pumps as chlorine does.  (Chlorine or Hydrogen Peroxide – Which is Better for Treating Water?) does not have these byproducts and in addition, has several benefits: it can also rid water of hydrogen sulfide (H2S) smells (rotten eggs), and activated carbon filters used after disinfection last much longer than when used with hydrogen peroxide than with chlorine. (Eliminate Well Water Odors: Four Reasons Why Hydrogen Peroxide Water Treatment Is Best)  According the to Minnesota Rural Water Association, potassium permanganate is also a strong oxidizer that is in common use in Minnesota to remove iron and manganese. (Iron and Manganese)

    • Retention time is needed for chlorine to work, therefore the chlorine must sit in the well for a certain period, or if you are using chlorine as a continuous disinfectant, a holding tank is usually set up, with the size being dependent on your household’s normal flow rate (water usage rate).

    • Filtration is necessary to remove by-products (in the case of chlorine) and iron products (in all cases).   When chlorine contacts iron in the water, it changes the iron from a ferrous state to a ferric state, making it an insoluble particulate.  This is the state that can be easily filtered.  There are various types of filters available, the most common being activated carbon.  Reverse osmosis and some other types of filtration can remove iron from water without oxidation, and treating your water from the point it enters your home is important for all your appliances, but the iron bacteria may still thrive in your well and cause clogs up to the water treatment point. Iron can clog wells, pumps, sprinklers, dishwashers, and other devices over time. (Iron in Well Water)

If you notice these signs of brown or different colored stains, bad smell or slime deposits in your sinks or toilets, it’s a good idea to get your water tested for iron.  If iron bacteria are present, it’s likely a common problem in your area, and there are local companies who can provide the equipment needed to remove it.  However, it’s best to do your own research on these solutions to make sure that a company doesn’t try to sell you unnecessary equipment (such as a retention tank for a hydrogen peroxide system), and also it’s a good idea to get references and reviews from actual customers.

If you are skeptical about the effects of mold in homes, please stop and read this.

If you are skeptical about the effects of mold in homes, please stop and read this.

Mold is a fungus that has thousands of species and grows outdoors and indoors, year-round; every building has some level of mold in it. (Molds in the Environment, Johns Hopkins Medicine)  It spreads by microscopic spores which are carried in the air, on clothing, shoes and pets to lodge and potentially multiply indoors. (Basic Facts about Mold and Dampness, CDC) Since the spores are too small to see, many people doubt that mold in the home or workplace can actually cause illness.  Is all mold really bad, or are only some molds bad?  Why do some people become ill while staying a short time in a space while others seem to be unaffected?  What levels of mold should cause concern and what tests are best?   These are very common questions and we would like to highlight some scientific research about mold to understand the answers to these questions.  

Because edible mushrooms and molds growing on basement walls are all classified as fungus, with more adverse reactions arising from handling some than others, there are obviously harmless and harmful species in the family.  It’s overgrowth of the harmful types that can lead to problems in buildings. In the right environment they quickly grow from microscopic spores to visible mycelium (colonies), to sending out more spores into the air and starting other colonies.. 

In general, molds need the following to grow (What You Need to Know About Mold):

  • Moisture: even moisture from the air, when it is above 80% humidity, can be enough to sustain mold.
  • Warmer temperatures: most molds cannot grow below 40 deg F, which is why refrigerators are kept at 39 deg F and below. 40 -100 deg F sustains mold.
  • Organic (carbon-based) materials to digest.  Mold can even grow on glass, metal and other inhospitable environments, if it has dirt or synthetic material to feed on.
  • Protection (shade) from UV rays: ultraviolet light kills most mold, so you won’t see it growing in direct sunlight!
  • Oxygen: mold needs very little oxygen to survive, so it’s difficult to control mold by depriving it of oxygen.

Therefore, warm, moist areas with natural materials like wood, paper or fabric are great at growing mold, and mold can take root in these areas in as little as 48 hours.  Eliminating the most important material (water) quickly will stop mold in its tracks and not allow it to proliferate.

Molds can emit several types of toxins: mycotoxins and microbial volatile organic compounds (mVOCs). Mycotoxins are solid or liquid.  Of the several hundred mycotoxins identified so far, about a dozen have gained the most attention due to their severe effects on human health and their occurrences in food. (Mycotoxins, WHO). Mycotoxins have also been frequently detected in house-dust over the past decades, and they can be carried through the air on dust, spores or other fragments of mold.  (Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples)  By contrast, MVOCs are gaseous, so they are already airborne.  Both mycotoxins and mVOCs can be emitted when the mold colony is disturbed or threatened, by humans, animals or by other microbes.

Ancient plagues and epidemics among animals and humans were likely the result of mycotoxins in foods. Here are some examples: 

  • In 1960, about 100,000 young turkeys died in the UK, and scientists discovered that aflatoxins produced by the common molds Aspergillus flavus and A. parasiticus in their feed led to the deaths.  (Mycotoxin: Its Impact on Gut Health and Microbiota)  
  • Aflatoxin can also cause liver cancer in humans.  
  • Ingestion of ergot, which is a fungal disease of rye and other grains in which black elongated fruiting bodies grow in the ears of the head of grain, can result in ergotism, a painful and often deadly disease.  Ergotism has even been implicated in premeditated poisonings and witch trials, due to its psychoactive effects and disturbances. (Ergot: from witchcraft to biotechnology)
  • Sadly, since the isolation of T-2 mycotoxin (a member of the trichothecene mycotoxins, which is emitted from several types of mold including Stachybotrys chartarum), T-2 mycotoxin has been allegedly used as a bioweapon during the military conflicts in Laos (1975-81), Kampuchea (1979-81), and Afghanistan (1979-81) to produce lethal and nonlethal casualties. (CBRNE - T-2 Mycotoxins)  

Illness by ingestion of mycotoxins from a food source occurs more frequently than by inhalation of mycotoxins (for example in dust from mold growing on or behind walls); so with the exception of bioweapons, inhalation of mycotoxins is of a lower concentration so that respiratory irritation is the usual effect.  

MVOCs, being gaseous, are highly inhalable, and their effects can range from annoyance (of the musty smell) to coughing, wheezing, fatigue, headaches, dyspnea, allergies, eczema, as well as serious respiratory issues (Sick Building Syndrome, Mølhave, L. "Encyclopedia of Environmental Health." 663-669.)

So why does mold affect some individuals more than others?  For a long time, individuals who became ill upon entering or spending time in a building were deemed to have more psychological issues than actual physical issues, because testing of the building often revealed no measurable toxins.  There are several reasons for this: 

  • First, methods of testing for toxins were not sensitive or specific enough to find the cause.  Dr. Ritchie Shoemaker, a well-known researcher and doctor in the area of mold, Chronic Inflammatory Response Syndrome (CIRS) and Water-Damaged Buildings (WDB), addressed this problem when discussing testing methods in his 2021 paper.  Air sampling methods are not adequate to pick up smaller spores, they may also miss spores outside the air flow boundary and duration of the test, and some spores (like Stachybotrys, commonly called Black Mold even though many other molds are black in appearance) are heavy and don’t become airborne in large numbers, especially if the mold colony is hidden inside a wall. 
  • Some bacteria and molds in WDB produce mVOCs, which are toxins not detected by spore air tests.  Only tests that capture mVOCs would be able to detect these. 
  • Some people are more sensitive to mold spores, mycotoxins, mVOCs and endotoxins than the general population.  They may be missing genes that allow their bodies to process the toxins, or their immune system may have been chronically overstimulated in a previous chemical or toxin exposure.  These predispositions make them much more sensitive to low levels of toxins from mold and bacteria.

Therefore, mold toxins are sometimes difficult to detect, and they don’t produce similar responses per concentration in everyone due to individual sensitivities. This phenomenon is addressed in a guidance paper to clinicians (doctors and other health practitioners) by the University of Connecticut Health Center.  The paper discusses 5 case studies of patients who were observed to have sick building syndrome due to mold issues in WDB. 

There are several reactions to exposure to mold discussed in the paper:

  1. Fungal infections: Infection usually requires direct contact with fungus, and only immuno- compromised or highly sensitive people are at-risk for fungal infections.
  2. Allergic and Hypersensitivity reactions: It is well established that fungi can cause allergic reactions in humans, and molds are typically included in the skin test panels used clinically by immunologists to screen for environmental triggers in atopic patients (those who are predisposed to immune responses). Many atopic patients experience allergic symptoms related to molds commonly encountered outdoors. The presence of mold spores in the indoor environment is not in itself a problem when the source is the normal interchange of outside air and the amount and types of spores inside are the same or less than outside. However, mold actively growing on an indoor substrate may affect the quality of the environment by degrading the surrounding materials (weakening the structure) and, more important, by potentially adding unhealthy chemicals and bioaerosols to the indoor air. Higher levels of mold spores inside than outside or the presence of different species inside than outside reflect this “amplification” of mold.  Antigens are toxins that produce antibodies, and in the case of mold, antigens could be spores or spore fragments, mycotoxins, or mVOCs.  “Individuals’ immune responses to these antigenic molecules are determined by their genetic makeup and environmental factors. Important among these factors are the frequency of exposure to the antigens and the intensity of the exposures…Development of sensitization to antigens generally requires repeat exposures, often to high ambient concentrations of the sensitizing material. Once sensitization to an antigen has developed, it requires a much lower concentration upon re-exposure to elicit the reactive phase that we recognize as the clinical manifestation of disease.  In general, the higher the exposure and the degree to which one has been sensitized, the more severe the allergic or immune-mediated response.”  

This is the pathway by which mold “allergies” progress to severe illness, and even death. All five of the cases discussed in the aforementioned paper necessitated the patients to be removed from the buildings (school, office, and home) to recover from their symptoms.  Unfortunately the death of a two-year-old boy in the UK in 2020 was the result of a severe respiratory condition due to prolonged exposure to mold (the family had reported mold in the apartment repeatedly up to three years prior, however, the housing authority did nothing to repair or mitigate it).  This highlights the need for parents to be knowledgeable about the effects of mold as advocates for their children. 

When should a house be tested for mold? We concur with this experienced mold inspector’s methodology:

  1. If you have no visible mold but high humidity, it’s probable that mold is starting to grow in the area.  Humidity is easy to feel even without sensors but to be sure, you can get 2 humidity sensors here for only $10.
  2. If you find visible mold growth, but don’t know the extent of the damage
  3. If you or someone in your family suffers from health symptoms related to mold exposure, then testing of the home would be appropriate.
  4. If you smell a musty odor, this is an indication that you have actively growing mold.  These odors are mVOCs.
  5. If you’ve already had remediation and need proof that it was performed effectively in order to move back in safely, hopefully a “before” or baseline test was performed for comparison.

What kind of tests are appropriate? 

DIY mold tests are abundant, however, in most cases you get what you pay for.  Petri dishes, while economical, do not provide the quantitative information (how much mold is in the air) and except in the case of sending the dishes in for lab analysis, do not give qualitative information about the types of species. 

If you have only a moderate budget and don’t know where the mold may be coming from, we believe non-viable air sampling can give a lot of information about the spaces in your home.  GotMold? Is an easy way to take these samples in different rooms and get them analyzed by an accredited laboratory. They include an outside sample cassette so that your inside rooms can be referenced against it.  The lowest level of indoor spores should be comparable to an outdoor sample, because mold is in the air everywhere.

If you do have an idea of where the mold is originating, adding a tape-lift, swab or bulk (air filter) sample to your tests can help confirm if a moldy-looking area is indeed mold.  

If, however, an area of your home recently flooded, or you’re experiencing new or worsening health problems, we would recommend requesting a visit from a professional, experienced mold inspector who will not only take samples: they should first of all look at the moisture problems in the home which could generate the mold.  They will also be able to distinguish which type of test is appropriate, and if mold is discovered, whether it’s active mold growth that could be causing illness or inactive mold that’s been dried out and contained behind walls for years.   There is a big difference in renovation scope and cost for active mold and inactive mold!   We understand the health impacts of critically-contaminated spaces on one end of the spectrum, but since many leaks and humidity problems can be corrected in a local, economical way, it’s often not necessary to “gut” a home to remediate it well.  

Beware if the inspector only wants to do ERMI testing.  ERMI stands for Environmental Relative Moldiness Index and was developed by the EPA for research purposes only.  Despite its popularity among many mold inspectors and a number of mail-order labs such as EnviroBiomics and Mycometrics, ERMI has a number of drawbacks that can cause it to miss major mold problems, or overstate minor ones.  

In the end, just as a leak in your outdoor shed can make a stinky, decaying mess, mold can do the same indoors–and it may or may not affect your family’s health, depending on their genetic makeup and previous experiences with mold, chemicals and toxins.   However, we do hope that you will take any water intrusion or humidity problem seriously, because it has the potential to do serious harm.  

Photo by Pawel Czerwinski on Unsplash

Help! My basement has flooded!

Help!  My basement has flooded!

While some are suffering in the US from droughts, others are walking ankle-deep through water in their basement.  Unfortunately water in the basement is different from other areas of the home because 1) it doesn’t easily drain away because you can’t just “cut a hole in the floor”, 2) being below ground level means you may be already fighting ground water problems that are just looking for ways to intrude, 3) ventilation is typically sub-par, meaning that drying it out takes a lot of power equipment, not just opening windows!  It can be very daunting for a homeowner with limited renovation funds, but don’t turn a blind eye on a flooded basement, because the mold that ensues can quickly affect the rest of your home.

Call for help–immediately!

If your area was hit by a storm, chances are that a lot of other people have the same problem you do–they need restoration professionals too!  However, you can’t afford to wait 3 days after the water hits the floor, because mold can start to take root in your walls and furnishings only 48 hours after they get wet.  Here are some ideas for resources:

  • Family (of course!)

  • Neighbors (they probably need help too)

  • If your state officials have declared a state of emergency, the Federal Emergency Management Agency (FEMA) may be able to help.

  • The American Red Cross has disaster assistance services.

  • Local churches often set up assistance centers for homeowners.

  • Workers for hire often gather at local home improvement stores, but be wary of giving anyone without a contractor’s license a job in your home for safety and insurance reasons.

What needs to be done?  If you don’t hire a professional restoration service, you can use the following as a guide.

  1. First of all, don’t walk through any standing water if there’s a chance that electrical appliances sitting in it may be energized.  This presents a big problem if the circuit breakers for the basement are IN the basement, but do your best to disconnect power before walking through the water.

  2. If your basement sustained a sewage backup as part of the flood event, be very cautious about contacting/working in the dirty water, as open wounds can become infected by microbes from the sewage.  In any case you’ll want waterproof boots, goggles and gloves at the minimum!

  3. Open windows to the outside if it is low humidity outside–this will help with the drying process.

  4. Standing water has to go.  Small amounts of water can be picked up by a wet-dry vac (make sure you have the right type of filter installed for wet suction), but if you have a lot more water, you’re going to want to find a dewatering pump that doesn’t need to be emptied; it pumps the water outside via a hose (away from the house!).  

  5. Silt or mud may have accumulated on hard floors from floodwaters, making it slippery.   If you have any snow shovels or flat shovels and buckets, these are the tools you need to remove it. 

  6. Wet carpeting and padding has to go; it is very difficult to dry and successfully salvage large areas of carpeting, except for area rugs, which must be professionally cleaned as soon as possible (consider cleaning cost versus value).  From this point on, all wet materials removed from the basement should be piled near the road where waste management can pick them up, or if you will have to haul them yourself, on a trailer outside.

  7. Wet upholstered furniture and bedding (mattresses and boxsprings) have to go, because like carpet, it is too difficult to get the center of the upholstery completely dry. 

  8. If you have any solid wood furniture without upholstery, you can move it outside for drying and wiping down if the weather is good.  Use rags and a cleaner like TotalClean to remove dirt and let them dry in the sun.

  9. Walls: Remove all drywall and insulation below the floodline, as well as 2-4 feet up the wall.  This is because the drywall wicks up water, and the insulation behind it will be wet also.  The goal is to get the studs and all of the wall cavity dry.  If you have built-in cabinetry that has gotten wet (even an inch or two), we’re very sorry to inform you that it has to be ripped out, because there’s no way to completely dry the back of the cabinet.  🙁

  10. Once the wet materials have been removed,, and throw all your tools at the remaining moisture: we’re talking fans, heaters and dehumidifiers, as each will do a different role in drying.  Fans improve air circulation.  If the temperature is cool, add a heater so that relative humidity will go down and speed up drying more.  Dehumidifiers also lower the relative humidity.  According to Cleaning and Maintenance Management, a property restoration company, here is how we can understand the drying process: “Low relative humidity (RH) is necessary for drying, as moisture in materials and air seek equilibrium. The lower the RH of the air, the quicker the wet materials will give up their moisture to become equal with the moisture in the air. …Air movement is the workhorse of drying by displacing high RH at the surface of wet materials with lower RH. Circulation airflow moves wet air to our dehumidification systems (either mechanical or ventilation), allowing us to manage RH and water vapor in the air.” 

  11. If you find that musty odors have started to form, you can clear particulates from the air using a large HEPA filter with activated carbon such as our Cleanroom WindPRO 650, or if you don’t have the budget, make a Box Fan Air Cleaner, to which you can also add activated carbon to remove odors. 

  12. Plugging in  Germ Defenders and Upgraded Air Angel Mobile units will assist in deterring mold growth around the basement.

  13. Once everything is dry, it’s good to invite an experienced waterproofing/foundation company to inspect your basement to see if there’s anything that can be repaired or upgraded so that you (hopefully) will not have to go through such an ordeal again.  We have several articles you can use to educate yourself on waterproofing techniques: Getting the Basement Dried Out and a cautionary article: Waterproof Wall Coatings: Should You Use Them in Your Basement?  so that you will have background for a conversation with professionals on their suggested course of action.

Since “an ounce of prevention is worth a pound of cure”, if you are reading this before any flood occurs, check into preparing for such disasters by reading our article here.  As always, we are here to field questions or help with equipment, because flood restoration can be stressful and overwhelming.  Don’t give up!

Scent Control for Hunters

Scent Control for Hunters

If you are a hunter, you’ll likely know that many animals have a much more sophisticated sense of smell than humans, giving them information about how to stay alive and out of our paths.  Eliminating human scent, then, gives an edge to the hunter, allowing his prey to come closer or linger a few more seconds.  There are many products marketed to hunters, but if you’re in the know, they don’t have to be expensive or hard to find!  In fact, some are already in your pantry or backyard…

First of all, hunting is not like watching sports.  Although traditionally it is “unlucky” to wash a certain item of clothing if your team wins (tradition says you should never wash it), doing this in hunting is a sure way to tip off your prey, because human scents like sweat, gunpowder and gasoline are big warning signs and build up with wear!  So, into the wash go the hunting clothes…but not just with any laundry detergent.  Artificial scents and whiteners are pungent “stay-away” clues to them.  Particularly, three studies in 1992, 2013 and 2014 on deer eyes confirmed several theories about their visual abilities: (When deer eyes can see laundry detergent residue, hunters must work hard to stay hidden)

  • With just two types of color photoreceptors, deer eyes distinguish fewer colors than human eyes, which have three types of color detectors.
  • With a deeper perception of blues into the ultraviolet range, deer see not only blue jeans but residue from UV brighteners in laundry detergent that is invisible to humans.
  • Deer pupils gather more light, and a greater concentration of light-dark photoreceptors gives them better night vision. Eyes positioned on the sides of the head give deer a broader field of view.
  • Deer have incredible motion detection. They can see a hunter blink from a distance, but if there’s no additional movement they don’t know what it is.

Similarly, a deer’s sense of smell is hyperactive compared to ours.   Biologist Dr. Bronson Strickland of Mississippi State University’s Deer Lab describes “scent” as a generic term for volatile organic compounds (VOCs) which are given off by a subject. Due to their high vapor pressure, these lead to large numbers of molecules evaporating into the surrounding air.  (The Science Behind a Deer's Sense of Smell & Scent Control)

VOCs can come from numerous sources, like manmade products such as gasoline, diesel fuel, paints, oil, tar and perfumes. Our bodies give off thousands of VOCs: our organs such as the liver, kidneys, lungs and skin all take toxins from normal metabolism and render them into removable chemicals, through excretory pathways found in feces, urine, breath, sweat and saliva.

Here’s where a deer has the upper “hand”: any of these “human” scent molecules are inhaled through its broad nasal openings and then captured by little hair-like cilia in the mucous membrane. Once captured by the cilia, VOC molecules dissolve into the mucous and are transferred to the olfactory epithelium.  The whitetail epithelium is reported to have 297 million olfactory receptors. (The human epithelium has only 5 million.) These receptors translate the scent signal as electrical impulses up through nerves that extend through the roof of the mouth and into the part of the brain known as the olfactory bulb.  In another study, it was demonstrated that a whitetail’s olfactory bulb is about four times larger than that of a human. This means deer have a greater capacity to both detect and transmit scent signals to their brains. The olfactory bulb then shoots electrical impulses up the olfactory nerve into the limbic system of the brain for analysis.  The longer a deer has lived in the wild, the more the deer has learned from experience that certain VOC signatures signal danger.   (The Science Behind a Deer's Sense of Smell & Scent Control)

Since hunters strive to be invisible to their prey, then, the main goal is to avoid emitting as many of these VOCs as possible.  We’ll go them here one by one; one of the cheapest natural deodorizers is baking soda, and you can use it in your laundry, on your teeth and sprinkled in your gear:

What you eat will vary your VOC signature.  The company Lumen figured that out and uses it to help customers burn fat and avoid diabetes, among other goals, by breathing into a device to analyze the VOCs in their breath.   Hunters, similarly, can recognize that eating certain foods like onion and garlic before hunting will of course show up in their scent signature and possibly frighten away prey.  

Body odor is very important.  Avid hunters have recognized that even sweat generated by walking from their vehicle to the hunting site (usually carrying a lot of equipment) defeats their purpose, so they take a number of measures, extreme to some, to avoid generating offensive VOCs:

  • Showering with non-scented products
  • Brushing teeth (mint is better than bad human breath and baking soda is even better)
  • Using unscented anti-perspirant and sprinkling baking soda in shoes to absorb sweat
  • Avoiding pungent foods like garlic, fish and alcohol before the hunt

As we mentioned before, what you wear is huge.  Some of the “hacks” include:

  • Washing with unscented or “de-scenting” laundry detergent with no optical brighteners
  • Drying clothing outdoors when possible, or without dryer scents when not possible
  • Storing hunting clothing in plastic totes away from other stinky areas like garages or kitchens.  Some hunters use garbage bags, but these are typically loaded with VOCs of their own!
  • Placing natural materials like fresh pine needles or acorns in sachets in the tote with the clothes to scent them naturally
  • Carrying hunting clothing and boots to the site and changing into them, or storing them at the site, to avoid unnatural scents like asphalt and gasoline
  • Buying ScentLok clothing (activated carbon lined) to adsorb their scent
  • Using de-scenting or “cover” sprays on their clothing periodically.
  • Using ozone generators to treat their clothing and equipment to remove VOCs

What we suggest (hunters, let us know what you think!)

  • Using TotalClean to de-scent clothing periodically, or on outer wear like coats that aren’t washed after every use.  After all, TotalClean does industrial tasks like de-scenting garbage and waste, in a non-toxic way, using the natural elements of iodine and copper.  You can also use TotalClean to wipe down non-washable equipment like binoculars and guns.  TotalClean can be used in every area of your vehicle to descent it as well, before and after the hunt (dressed meat and dogs for hunting such as squirrels and rabbits can leave quite their own “scent” on a vehicle!)
  • Using activated carbon to adsorb VOCs of clothing and equipment while it’s in storage, especially when it's new.  Just cut large pieces from the media and place them below, between and above your clothing in the tote.

Many hunters and scientists advise that you cannot eliminate or block 100% of your VOCs, but using as many precautions as possible can give you precious seconds or yards to make the difference between a fruitful and unfruitful hunt!

Actinobacteria: Another danger lurking in Water Damaged Buildings

Actinobacteria: Another danger lurking in Water Damaged Buildings

Avoiding mold and mycotoxins has taken a major share of the spotlight in healthy home discussions, and for good reason, because they can elicit major allergic responses in many people and disabling immune responses in very sensitive people.  However, there is another organism that grows right along with mold in moist environments, and it’s often overlooked even though it can produce the same types of reactions.  Some types of bacteria are unique enough to be in a class of their own, called actinobacteria.  

Here’s a short refresher from an article about bacteria, endotoxins and exotoxins:  bacteria can be classed into two different groups: “Gram-negative” or “Gram-positive”.  These classes are based on a test developed by scientist Christian Gram in 1884, which differentiates the bacteria using a purple stain.   According to webmd.com, bacteria either have a hard, outer shell, or a thick, mesh-like membrane called peptidoglycan.  The hard outer shell will resist the purple stain, and show up as a red color.  These are called “gram negative” because the purple stain did not show.  Bacteria with the peptidoglycan absorb the purple stain much more easily and are called “gram positive”.  The stain also tells many more characteristics about the bacteria and the way it interacts with treatment. 

Going back to actinobacteria (also called actinomycetes), they are a diverse group of gram-positive bacteria, meaning they have that mesh-like membrane called peptidoglycan. However, they resemble molds (fungi) because they are adapted to life on solid surfaces and they can produce mycelium (branching structures) and dry spores like most fungi. Actinomycete spores are known to be important air contaminants in occupational environments, such as agriculture and waste composting facilities, and have recently gained special attention as indicators of mold problems in buildings. They do not belong to the normal microbial flora in indoor air but have been found in buildings suffering from moisture and mold problems. (Characteristics of Airborne Actinomycete Spores)  One class of actinobacteria, called mycobacteria, include the types of bacteria responsible for tuberculosis and leprosy.   These actinobacteria require iron for growth, and in the human body, will destroy red blood cells in order to acquire the iron it needs.

Actinobacteria, which occur in both terrestrial and aquatic habitats, are among the most common groups of gram-positive microorganisms in nature.  Living in soil, actinobacteria decompose organic matter and display antagonism against other bacteria and fungi, with which they compete for nutrients. Actinobacteria have incredible abilities to survive under extreme conditions in their natural environment and have been found in strongly saline soils, soils with a high content of exchangeable sodium and/or magnesium ions, and heavy clay soil which is submerged by water.  (Discovery of Actinomycetes from Extreme Environments with Potential to Produce Novel Antibiotics).  If they can live in these extreme environments, it’s not too much of a stretch to find them indoors in water-damaged buildings (WDB) and indeed, they thrive there too.  In a 2017 study of an office building in the northeast US which had a history of water incursions via roofs, walls, and pipes, actinobacteria were detected in 74% of dust samples, and thermophilic actinomycetes (unique high-temperature aerobic bacteria) were most predominant (81%) among the three types.   In analysis of building occupants who participated (105 participants out of 136 occupants), the increasing thermophilic actinomycetes levels in floor dust were significantly associated with decreased pulmonary function and increased odds of having symptoms reflecting possible granulomatous disease, particularly shortness of breath on exertion, flu-like achiness, and fever and chills.  Prevalences of the three granulomatous disease-like symptoms among the occupants were similar to those reported in another study of a large office building with eight hypersensitivity pneumonitis and six sarcoidosis cases, a long history of moisture incursions, and high fungal and bacterial contamination.   

Dr. Ritchie Shoemaker, an expert on mold illness and CIRS, published the paper Exposure to Actinobacteria resident in water-damaged buildings and resultant immune injury in Chronic Inflammatory Response Syndrome in 2021.  In it, he details some of the interesting facts about actinobacteria that many people do not know:

  • Geosmin is a VOC that accounts for the characteristic musty smell found in many WDB, and many actinobacteria also produce this VOC, creating the logical fallacy that the smell found in WDB buildings is only due to mold growth.  
  • Certain species of actinobacteria live on humans: on our skin and in mucous membranes and genitourinary tracts.  He denoted these HH actinobacteria (for human habitat), as opposed to SH actinobacteria (for soil habitat).   The interior of WDB are usually colonized by HH actinobacteria much more than SH actinobacteria; this is not the same for fungi, because WDB are easily colonized by outdoor (SH) fungi.  (Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi)  
  • Dr. Shoemaker developed indices for exposure to actinobacteria showing differences in subsequent immunoreactivity in Chronic Immune Response Syndrome (CIRS) patients for actinobacteria from human skin carriage, HH, as opposed to SH actinobacteria.  
  • He theorized that the “toxin” that causes the immunoreactivity is not exotoxins, like normal gram-positive bacteria, but extracellular vesicles of 20-150 nanometer size that carry potentially inflammatory molecular signaling compounds from inside the cell wall to the outside. Vesicles are known to contain a variety of charges including nucleic acids, lipoproteins, enzymes, and toxins.  

“Better Health Guy” Scott Forsgren, Functional Diagnostic Nutrition Practitioner interviewed Dr. Larry Schwartz, an indoor air expert with a specialty area is assessing, testing, and creating solutions to make homes and workplaces environmentally safe for patients with inflammatory illnesses, about actinobacteria.  According to Dr. Schwartz, one can get treated for symptoms of CIRS (of which there are 37), but not necessarily get to the root cause.  However, if their blood is tested by GENIE (Genomic expression: Inflammation Explained), root causes for CIRS can be discovered.  “We found over 2,000 patients that have taken the GENIE test. About 42% of them are being triggered by Actinomycetes. The next largest percentage was endotoxins. The least percentage was the mycotoxin.”   (podcast: Episode #171: Actinomycetes with Larry Schwartz, BSME, MBA, CIEC)  Some background on GENIE:  this test was developed by Dr. Shoemaker and Dr. James Ryan, a molecular biologist, who have collaborated on genetic testing since 2011. GENIE is a gene expression assay composed of 188 genes that is performed on a single blood specimen. It reveals gene expression abnormalities found most often in patients facing CIRS illnesses. Typically it's done repeatedly, once before treatment for CIRS, after the first eleven steps of the treatment protocol, during or after VIP treatment. (vasoactive intestinal polypeptide). VIP is a naturally occurring human neuropeptide which affects multiple pathways in the brain and throughout the body, and it’s given as a low-dose nasal spray to benefit patients with severe CIRS.  GENIE results will show if the patient's metabolism is improving as their treatment progresses.

Dr. Schwartz’ research exposed that the major “factory” of actinobacteria (he calls them “actinos” for short) is the bedroom, because of the time we spend under covers (warm temperature) and the amount of skin cells that are deposited in the bed.  He also characterizes showers, crawlspaces and basements and drains as places where actinobacteria tend to multiply because of constant moisture.  He has a bedding protocol for cleaning bedsheets, and drain “protocol” on how to clean drains on a regular basis so that actinobacteria will not continue to proliferate in them.  (check out minute 59:17 of the podcast for these protocols).  Dr. Schwartz also advocates for use of HEPA filters, PCO devices (like the Air Angel Mobile) and bipolar devices (like the Mold Guard).  We would also add that the use of bathroom exhaust fans and humidity control are paramount for lowering relative humidity.  

Dr. Schwartz acknowledged that similar to the way pathogenic mold makes mycotoxins,  many pathogenic species of actinos often create a chemical called mycolic acid, which may be the allergy trigger for CIRS patients.  Dr. Ritchie Shoemaker also found that mycolic acids played a role in inducing T-cell responses (Exposure to Actinobacteria resident in water-damaged buildings and resultant immune injury in Chronic Inflammatory Response Syndrome)  According to the physicians with which Dr. Schwartz consults, although actinos can trigger inflammation and CIRS, they are not necessarily triggering histamines, and mast cell activation, because mast cell activation is primarily a histamine-driven effect. 

As for testing, EnviroBiomics is the only lab known by Dr. Schwartz that does next generation sequencing (NGS) to determine levels of actinos in home samples. Using special lab equipment called NGS processors, they give the in-depth degree of data on the speciation of actinos and their concentrations.  Dr. Schwartz can analyze the results of these test reports, in conjunction with at-home or virtual visits, to determine what may be exacerbating CIRS symptoms.  In one case, a client who lived in a farmhouse on 3 acres had CIRS, but the cause was not in his home.  It turned out that a neighboring property had a dilapidated barn with rotting hay in it (“farmer’s lung” disease comes from the actinobacteria in rotting hay), and correction of the ventilation in his home significantly improved his symptoms.  

Now for the good: despite its ability to cause illness, scientists and researchers have discovered how to harness actinomycetes for healing purposes.  Antibiotics are a class of molecules used for the treatment and prevention of bacterial infections.  These bioactive compounds are produced naturally from different species of fungi and bacteria, but the most attractive class of microorganisms that are able to produce these secondary metabolites are actinobacteria, in particular, actinomycetes. The importance of this order is due to their abilities to produce different classes of antibiotics in terms of chemical structure and mechanisms of action. Moreover, different genera and species of actinomycetes are able to produce the same class of antibiotics and, in few cases, the same chemical compound.  Thanks to antibiotics and the research developed in this field, many infections are now treatable, and life-quality/life expectancy are better than in the past.  (Actinomycetes: A Never-Ending Source of Bioactive Compounds—An Overview on Antibiotics Production)  

In short, actinobacteria can be confused with mold because of many similarities: how they grow, the environmental conditions they prefer, what they smell like, and what symptoms they cause in humans.  The good thing is that regular cleaning of areas like the bedroom, bathroom and drains to remove dust and allergens also removes food for actinobacteria.  In addition, a whole-home approach also examines the ways that toxins from actinobacteria inside walls and even outside can enter the home via leaks and negative air pressure.  When cleaning protocols are introduced and these air pathways are addressed, actinobacteria numbers start to dwindle and the homeowner’s health increases.  Sometimes it takes a trained eye to discover where they are flourishing, but by knowing their preferred habitat and via testing, they are not completely “in the dark” anymore! 

Photo by Ozgu Ozden on Unsplash