Tag Archives for " PM2.5 "

Tree Air Filters are Real!

Tree Air Filters are Real!

Did you know that plants and trees filter PM2.5 and PM10 from the air?

If you’re not familiar with particulates and filtration, let me do a short recap: particulate matter (PM) is a big air pollutant in the form of dust, pollen, and most currently, smoke particles.  PM is measured in microns, or a millionth of a meter, and higher levels of PM floating around in the air are dangerous for our lungs, hearts, and whole bodies, because the smallest particles can pass through your lungs directly into your blood.  PM10 is matter that is 10 microns or smaller in diameter, and PM2.5 is matter that is 2.5 microns or smaller in diameter.  The smaller the particulates, the more dangerous it tends to be for us, because in dry conditions small dust can float in the air for a long time and reach down into the deepest parts of our lungs.

The way trees "filter" dust is one reason why air near trees feels cleaner: they intercept particulate matter, which clings to the surface of the leaves, branches and trunk.  The EPA has recognized this and even created a map of certain cities and their suburbs to show how much particulates are removed by trees per year, in kg or %.  EnviroAtlas is a cool interactive tool which you can use to examine 30 cities in the US and their suburbs, to see where the most (or least) particulates are removed by trees. Other layers available are ozone, nitrogen dioxide, carbon monoxide, and sulfur dioxide.  Other tools available in this map include soil drainage and water supply/runoff/etc.  It’s a huge database at your fingertips!

To use this map, go to this link.  It will offer a tutorial, or you can follow these steps to find PM2.5 and PM10 reduction:

  • Click on the box that says “Selected Communities: Combined Communities”.

  • Select a city you’re interested in and the map will zoom to that area.  Then close the box.

  • Click “Pollutant Reduction: Air” in the left-hand column,  and a sub-menu will appear.  Then select either “Particulate Matter: PM10” and/or “Particulate Matter: PM2.5” and check whether you want to see kg/year or %.  Wait for the map to populate with colors.  

  • Once the area has fully populated in color, you can click on an area of the city and the information about that area will appear in another box.  Use the left or right arrows in the box to scroll through it.  In general, darker blue areas absorb more PM than green or beige areas because they have more trees.

  • That’s it!   You can play around with different “layers” of information and check out some of the other tools, where data exists for the whole US, not just selected cities.

Trees are used in this way to create buffers around reservoirs, to keep dust and leaves from blowing in. (Working Trees for Water Quality)  They also can make up hedgerows around fields to prevent weed seeds from blowing in.  (A Guide to Hedgerows: Plantings That Enhance Biodiversity, Sustainability and Functionality)   They are also used as “shelterbelts” to decrease the speed of wind blowing over dry soil to reduce erosion and even prevent snow drifts.  (Why more 'shelterbelts' could prevent dust storms in the future)

Trees are a well-known asset for cities and residential areas because they help reduce air pollution, absorb excess rainwater, reduce erosion and even remediate soil to an extent.  Check out our articles “From the Outside In: How to cultivate a healthy yard that will benefit your indoor air!” and “Surround yourself with trees, and your heart will thank you for it!” to find out how to benefit most from trees in your community, whether you are looking for a place to live or have the opportunity to plant some.  In addition, https://www.itreetools.org/ has free tools with free online office hours that will help you find the right trees for your yard or community space.

How to help seniors avoid Alzheimer’s and dementia through better air quality

How to help seniors avoid Alzheimer's and dementia through better air quality

HypoAir has many generous customers!   We frequently get orders for multiple purifiers with different ship locations, because once our customers see how well they work, they want to gift them to friends and family who don’t know about their benefits, or may not be able to afford them.  Inspired by this generous spirit, I want to let you know a few more reasons and ways to help those who need it most, the elderly.

Whether or not you have a senior in your family, it’s likely you know someone who because of age or infirmity has more difficulty cleaning their home than they used to.  Anything that involves a ladder may not be safe for them to do, and heavy vacuums take a lot of energy to maneuver.  They also may not have access to better vacuums and air purifiers with HEPA filters, which are important for filtering out fine particulates from indoor air.  So, the dust piles up and this not only leads to a sense of discouragement; it can affect their physical mental abilities.  At least one study found that air pollution exposure later in life is a risk factor for dementia.  A study published in February 2022 “found that greater improvement in long-term AQ in late life was associated with slower cognitive declines in older women. “  Exactly how was this assessed?

First of all, the researchers reference the National Ambient Air Quality Standards (NAAQS), which were created in 1970 by the EPA through the Clean Air Act.  Six pollutants were identified as “criteria” pollutants, which are carbon monoxide, lead, nitrogen dioxide, particulate matter (in which two categories of less than 10 microns and less than 2.5 microns were identified), sulfur oxides, and ground-level ozone.  (Britannica.com)  Since the enactment of the NAAQS 50 years ago, significant reductions in the average pollution levels have been seen across the US, but not in every location.  This new air pollution study used a subset database of 2,232 women aged 74-92 who were already participating in the the Women’s Health Initiative (WHI) Memory Study (WHIMS)-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) study, which began in 2008.  The air pollution study correlated the pollution levels at each participant’s address in the first 10 years (2008-2018), according to US Environmental Protection Agency (EPA) monitoring data, to estimate annual mean concentrations of PM2.5 (in μg/m3) and NO2 (in parts per billion [ppb]).  Then they controlled for other variables such as age, education, geographical region, ApoE e4 genotypes (a gene specifically found to increase dementia risk), and cardiovascular risk factors, and excluded others with prevalent dementia and missing data.   The association of the cognitive decline of the remaining 2,232 women to the levels of air quality improvement where they lived showed that residing in locations with greater AQ improvement was associated with slower rates of decline in both general cognitive status and episodic memory.  These benefits were equivalent to slower cognitive declines in women who were 0.9 to 1.6 years younger at WHIMS-ECHO enrollment, meaning that their brains acted 0.9-1.6 years younger.

Whew, that’s a lot of information (the study was quite rigorous to read) but our customers (and really anyone interested in air quality) are seeking ways to live with the best quality of life, if not also the longest life possible.  Therefore, slowing down mental decline by 0.9 - 1.6 years is nothing to sneeze at!  It all adds up.  It just confirms what we’ve been writing about regarding the location of your home–if you are moving, it’s very important to choose a location that is low ambient air pollution.  Higher outdoor air pollution translates to poor quality air inside, if better ventilation and HEPA filters are not used.  

Fungi in the brain has been studied as a possible cause of Alzheimers and dementia patients.  This summary of recent studies, as well as a 3-part series on mold and its journey through the body on Citrisafe.com, a manufacturer of safe mold cleaning products, show how exposure to mold is a big risk to our brains.  This is another reason it’s important to investigate for mold in the homes of the seniors you know.  

Unfortunately, many seniors do not have the choice to move into better locations to improve air quality, but we can help them by making small improvements inside.  You can do what you can for your aging parents, your neighbors, and anyone else you are able to!

  • Help to identify the big “leaks” that may be letting outdoor pollution into their home.  Some of these are attic doors, leaky fireplace dampers, holes in the subfloor under bathtubs, large holes around plumbing or gas fittings, etc.  Sealing these will help to keep the ultra-fine particles and nitrogen dioxide at lower levels.

  • Encourage and/or help to change their furnace filter regularly.  Often the air return filter is under a ceiling grille, requiring a ladder.  Although it can be expensive to relocate the filter, you can suggest that they use the highest MERV filter possible for their system (up to MERV 13, check out our selection including activated carbon options here).  If renovation is possible, adding a box for a thicker filter will decrease the frequency of changes so that each filter will work longer.  

  • Suggest they buy, or give a gift of a HEPA filter.   In addition to the furnace filter, this filter can be placed in the room they use the most, so that they can breathe comfortably for most of the day.  Some filters are easily transportable to their bedroom.  If they are restricted in movement such as a recliner or bed, a small filter may be best.  IQAir’s new “ATEM” filter directs purified air in their breathing zone, and is quite portable.  HEPA filters reduce cleaning frequency and intensity by trapping dust, but the filters will need changing (a maintenance cost of running them).

  • If particulate air quality is quite good in their home but bacteria and viruses are a concern, you can suggest or gift an Air Angel.  Air Angels are also portable units that deactivate microorganisms like bacteria, viruses and mold with polarized ions.  Air Angels require very little maintenance, in fact only a replacement AHPCO cell once a year. 

  • Advocate for better ventilation.  We are BIG on fresh air ventilation, because it dilutes pollutants that come from inside (CO2, VOCs, etc.).  Our Window Ventilation Filters allow anyone to open their windows for more fresh air, but keep out pollution, pollen and dust.  They are easy to install and remove.  

  • Check for water intrusion and mold.  That “musty smell”, so often a stereotype of older persons’ homes and belongings, in reality is probably not their choice of scent–it’s an indicator that mold is growing somewhere in the home.  Mobility is often a limitation for seniors, so they may not be able to stoop and inspect under sinks, in closets or in the attic, basement or crawlspace.  If you have been reading our website, you’ll also know that if mold occurs, choosing the right contractor is not easy!  Help them to make difficult decisions of who to contract, how to deal with the remediation and what to clean and what to dispose, in order to have a healthy home going forward.

  • Have a conversation about cleaning products.  Of all of these “changes” this might be the most difficult one, because seniors often have preferred products that have been on the market for decades but in reality are toxic to their indoor air!  If you want more information on why these are toxic, and what products to use in place of them, check out our post and our own non-toxic cleaner TotalClean

Our kindness towards seniors counts, because it shows that we value life from the beginning to the end.  It also shows how we want to be cared for when we reach the same age.  Regardless of your financial ability, it’s the time and actions that show you care!

To Vent or Not to Vent the Dryer Indoors?

To Vent or Not to Vent the Dryer Indoors?

This was a tricky question.  We understand that many people live in poorly planned homes where they are not allowed to make changes.  However, venting a dryer inside has a lot of disadvantages, even health dangers.  It all comes down to knowing that more than just “hot air” comes out of the dryer; this is why they are supposed to be vented to the outdoors.

First of all, NEVER EXHAUST A GAS (propane or natural gas) DRYER TO THE INDOORS.  This is absolutely a safety hazard, because the combustion gas exhaust (including carbon monoxide and NOx) are mingled with that hot air, and no filter is going to remove combustion gasses.  You would be poisoning your home air quality.  If you have a gas dryer and do not see a way to install a vent to outside, stop right here and either change out your dryer for an electric one (preferably a heat pump dryer, which does not require a vent), or move your gas dryer to a location where you can exhaust the vent outdoors (which would involve moving the gas line, too).  If your dryer is electric, you can keep reading.

So, let’s first talk about what is coming out of your dryer vent.  

  1. Obviously, warm air is coming out, because, after all, if your dryer is not heating your clothes, it’s likely not drying them.
  2. Water vapor:  This is where all the water from wet clothes goes–it evaporates and goes out the vent.  Majorly humid air here.
  3. Dust: You might collect some lint from your clothing on the dryer screen, but a lot of fine dust goes right through the screen into the vent line and outside.  This is why, when dryer vent lines are not sealed well, or they come loose, the laundry room suddenly starts to become very dusty!  And, vent lines should be cleaned of dust periodically so that they don’t become a fire hazard.  

In the wintertime, it might be tempting to redirect that hot humid air back into your home to save some money on heating and humidification!  However, most people who do vent inside either don’t care about the air quality or don’t keep up with the maintenance needed to do it right.  Here are the ways that venting inside can go wrong: (Clothes Dryer Moisture Activity)

  1. With no filtration, a lot of lint gets spread around in the laundry room (and surrounding rooms and even the rest of the home via the HVAC ducts).  If anyone in your home is sensitive to dust or prone to asthma, this is not acceptable.
  2. With filtration, you may be putting the dryer vent under too much pressure to keep the air flow up. Low air flow can cause the dryer to run longer.
  3. Low air flow and lint buildup in the dryer vent can cause a fire.
  4. The laundry room (and the surrounding rooms) can get too warm when you run the dryer in summer.
  5. The laundry room (and surrounding rooms) can get too humid and create a risk for mold when you run the dryer in summer, or anytime that the humidity in the home is already high.  For every load of laundry you dry, you are venting up to a gallon of water in condensation from your dryer. This will create a sauna in your laundry room, which can cause wood to swell, paint to peel, and mold to take hold.  (Eight Problems with Indoor Dryer Vent Kits)
  6. Venting a dryer indoors is against code (illegal) in most states.
  7. There have been documented complaints that the fine particulates of lint that escape from the reservoir can cause the smoke detector to go off.  This is proof that there are loads of  particulates coming through indoor drying vents. (Eight Problems with Indoor Dryer Vent Kits)

Needless to say, the problems with venting indoors are legion. 

We want to empathize with tough living situations.  Some people live in an apartment or home that has an improvised laundry cubby in the middle of the building, and the owners did not install a vent.  Unless the laundry room is sitting over a crawlspace or basement with an unfinished ceiling, it can be difficult to install a ventline to the outside, even if you have an agreeable landlord.  In many situations telling a landlord about the problem will not solve the issue.  Sure, there are lots of positive comments about “ventless dryer filters”, but many other users are not reporting the huge humidity problems in their laundry room after drying just one load.   For all these reasons and more, we want to be kind and say that indoor dryer venting is ok, but in the end the safety considerations outweigh it.

So, here are some options:

  1. If you have the budget, plan to stay in your home a long time or are able to take a dryer with you when you move, consider purchasing a heat pump dryer (which is ventless).  
  2. If the landlord is not willing to install a vent, but the room has a window that opens, explore the options of a Dryer Vent Window Kit ($30-37).  You may also want to add a window lock if you’re permanently installing it in a ground floor window.
  3. OR, move the dryer to a room that has a window and run an extension cord to it, which would have to be plugged/unplugged every time you do laundry. 
  4. Run an extra spin cycle on your wet clothing to wring out more moisture, and air dry clothing on a rack.
  5. Offer to trade services with a friend who has a properly vented dryer (meal prep, car wash, dog walk, use your imagination!)
  6. Take your laundry to a laundromat.  

Dryers and laundry rooms in general require more planning than you think!  We tried to be creative and make the most of a difficult situation.  If you have another alternative that works for you, we’d love to hear about it!

Photo by Raychan on Unsplash

How droughts can even impact your air

How droughts can even impact your air

It’s been an unusual year.  In the southeast US, temperatures have been above normal with extended periods of no rain.  In the west, Lake Mead and Lake Powell have lowered by nearly 75% of where lake levels once were as the country's two largest reservoirs.  The Colorado River, which supplies these lakes, is used by seven surrounding states, and for decades annually the region was taking out about 1 million acre-feet of water more than the river was providing (Los Angeles Times).  Much of the country is in drought, and the Southwest is experiencing a megadrought–one it has not seen in 1,200 years. 

What is drought?  Drought arises only after a prolonged (>week) period of precipitation shortage that causes soil to dry up, and these period(s) may reoccur monthly.  Further, the prominent feature of drought is water deficit in both the atmosphere and the land component (e.g., soil and vegetation), resulting from the combination of precipitation shortage and increasing evapotranspirative water loss driven in part by high temperatures.   (2017 study).  When drought hits home, it’s more than water restrictions on your lawn. Here are some of the effects: 

  • Droughts increase ozone and PM2.5. A study released in 2017 examined air quality during 4 severe droughts and found that elevated ozone and PM2.5 are attributed to the combined effects of drought on deposition, natural emissions (wildfires, biogenic volatile organic compounds (BVOCs), and dust), and chemistry. In our post “It’s not the heat, it’s the humidity air pollution”,we noted the correlation between extreme heat and ozone.  Here are some other facts brought forth by the 2017 study: 

    • Meteorological conditions/extremes likely to co-occur with drought that are also associated with higher pollution levels. For example, high ozone is more likely to occur with high temperature and low RH (2016 study; 2017 study, 2016 study 2)

    • more frequent stagnation and heat waves could explain up to 40 % of the ozone and PM2.5 enhancements during drought

    • Since anthropogenic sources of ozone and PM2.5 have decreased significantly since 1990, the ozone and PM2.5 enhancements during drought are largely responses of natural processes from the land biosphere and abnormal atmospheric conditions. 

  • Droughts affect plants and their interaction with atmospheric ozone in complicated ways.  Some plants take in ground-level ozone, while other plants emit isoprene, a VOC that reacts with other atmospheric chemicals to create ozone. (Scientific American).  While studying the 2011-2015 drought in California, scientists found that: 

    • Dry conditions caused the plants to restrict water loss by closing their stomata (pores), which means taking in less ozone (ozone levels rose). Absorption did drop by about 15% during the most severe years of the drought.

    • Plants and trees were able to sustain isoprene production during the first three years by drawing on their carbon stores; isoprene helps them against heat stress. 

    • After 4 years, isoprene production dropped, and so did ozone (by 20%).  

  • Drying lakebeds (like the Great Salt Lake in Utah) expose people to toxic elements like arsenic when dust storms pick up lake bed dust, which are residuals of pesticides and agricultural chemicals that migrated into the lake over many decades.. (New York Times)  Another dried lake that causes air quality problems is Owens Lake in California, which is the country’s largest source of PM10 (geochange.er.gov).

  • Droughts can increase transmission of soil and dust-transmitted diseases like Valley Fever, which is coccidiodomycosis (Cocci for short).  Dust that is liberated from the soil during digging activities or dry, windy conditions can carry the fungus, which workers or residents can breathe in.  It causes symptoms like fever, cough and tiredness, but can occasionally be serious or deadly.

  • Trees and plants weakened by drought are more vulnerable to pests and disease, which can kill large numbers of them. Plants that succumb to drought and die cause several problems:

    • they turn from absorbing ozone and CO2 to emitting carbon via CO2.  

    • Dead plants and trees increase the risk of wildfires.

  • Droughts impact electric power generation systems (the Grid)in the following ways (americanscientist.org):

    • Hydropower is reduced because of low stream flow

    • Demand for electricity increases because increased cooling is needed in homes and offices 

    • Fossil-fuel plants (coal, natural gas) must increase production of electricity.

    • This means that air pollution increases during drought due to our electric power generation system. IF changes can be made to shift to “cleaner” generators (ie. natural gas instead of coal) during drought, it is generally better for air quality. 

In all, drought is a serious, complicated blight on both the land and the air, which we at HypoAir have felt for some time because California has been in long-term drought.  Finding ways to reduce water and energy consumption helps everyone, so don’t wait until regulations forces change–here’s a list of ways you can help your community and family before and during drought.  However, it’s the unseen increases in ozone, PM2.5, fungus and other forms of air pollution for which the public generally doesn’t prepare.  Here are some ways you can be smarter about air pollution from drought:

  • Continue to work on air sealing your home

  • Have extra MERV 13 furnace filters, air purifier filters, and filter media on hand so that you can change these more frequently

  • Have N95 respirators on hand for the immune-impaired who need to go outside 

  • Be cautious about excavation and construction work in areas where Valley Fever is a risk (wear an N95 mask if necessary)

Photo by redcharlie on Unsplash

Fiberglass: the air quality problem you didn’t consider

Fiberglass: the air quality problem you didn’t consider

With extreme weather issues such as storms and fires in the news, we can become very focused on mold from water damage and particulate matter (PM) from air pollution like smoke, but another problem has been silently causing lung and whole-body issues for decades: fiberglass insulation.

Fiberglass insulation, also known as glass wool, was accidentally invented in the 1930’s and patented in 1938 as Fiberglas.  It became a popular insulation for building and comes in batts, with a paper or plastic backing, or is available in loose form in bags, that can be blown into place.  Now fiberglass is used in: 

  • Appliances like dishwashers, refrigerators, ovens, exhaust fans, clothes dryers
  • Kerosene heaters and wood-burning stoves
  • roof shingles
  • Beds (also known as a silica sock)
  • Cigarette filters
  • HEPA and HVAC filters
  • Light fixtures
  • Carpets
  • Packing tape
  • And even some brands of toothpaste!

Children may be especially vulnerable to potential effects from fiberglass particle inhalation. “We’ve seen a substantial increase in air quality concerns from homeowners with young children experiencing chronic cough and eye irritation,” says Jeffrey Bradley, president of IndoorDoctor LLC. Bradley says fiberglass is often the culprit. (iqair.com)

Like most materials, fiberglass insulation degrades over time, and water speeds up the degradation process.  Therefore, although blown-in insulation is a popular choice for insulating attics and walls, leaving fiberglass exposed to humid air can cause the fibers to break and become airborne.  Typically, most manufacturers warn about wearing masks if you manually “disturb” the insulation by pushing past it or cutting into it.  However, loose fiberglass that is exposed to air currents can pick up these small fibers without manual disturbance, resulting in unhealthy PM2.5 levels in homes where it gets entrained into the air conditioning system.  

One woman has detailed her family’s project to remove all the fiberglass from their house after it was determined that fiberglass dust was making her sick.  Fiberglassawareness.com is a very useful website with many photos of where fiberglass is used in homes, and even cars and other buildings where you may not suspect it.  That pink (or yellow or white or green) stuff that you thought remained in the attic, doesn’t always stay where it belongs!  Wherever you can see exposed fiberglass, it may be emitting small particles into the air.  That means if it is peeking out of the ends of wrapped ducts, or falling (sometimes imperceptibly) out of can light fixtures, or being sucked into your AC system through small leaks in the ducts, it is in the air you breathe and can cause a myriad of health issues.  This page details a long list of fiberglass-exposure symptoms which overlap with mold-exposure symptoms, fibromyalgia symptoms, and auto-immune disorder symptoms, so the main culprit can be hard to diagnose.  In addition, many fiberglass insulation products use:

  • Phenol formaldehyde to bind the fiberglass fibers together (iqair.com), and the off-gassing of formaldehyde can cause similar symptoms. Formaldehyde is a carcinogen and exposure to fiberglass insulation formaldehyde causes brain cancer. According to John D. Spengler et.al., in the "Indoor Air Quality Handbook," residents of mobile homes who are exposed to fiberglass insulation are at increased risk of brain cancer. 
  • Styrene or Vinyl-Benzene is found in fiberglass insulation, and because benzene is used in many home other consumer products like water bottles, convenience food trays and wrappers, and feminine products, it contributes to a thick low-lying VOC cloud in some homes. According to Teresa Holler in the book "Holler for Your Health," styrene is toxic to the nervous system and exposure to styrene in fiberglass insulation causes behavioral changes, concentration problems, depression, tiredness, headaches, memory problems and weakness.  According to Andre E. Baert in the book "Biomedical and Health Research," long-term exposure to styrene in fiberglass insulation causes brain tumors and cancer. (ehow.com)
  • Methyl-ethyl-ketone (MEK) is used as a binder in some fiberglass.  Nick H. Proctor et.al., in the book "Proctor and Hughes' Chemical Hazards of the Workplace," list methyl ethyl ketone as a neurotoxin and exposure to MEK in fiberglass insulation as a cause for dizziness, nausea, headaches, depression and unconsciousness. (ehow.com)

According to the California Department of Public Health, frequent exposure to fiberglass insulation causes permanent changes in the central nervous system, the symptoms of which include personality changes, poor coordination, fatigue and poor concentration.(ehow.com)

How do you get rid of fiberglass in the air?  In some cases “encapsulation” can be an answer, which means that you can add a layer of protection over it.  We should never see exposed fiberglass (the brown paper side is supposed to be installed on the “warm” side, which in southern climates leaves the fiberglass exposed to the inside of the attic).  This real estate inspector wrote an article on encapsulation from the point of view that fiberglass is a poor air barrier and therefore should have a proper air barrier on both sides.  However, he notes at the end that a homeowner should not try to encapsulate any fiberglass himself, because of the risk of causing mold if moisture cannot escape.  

Here’s how you can minimize your exposure to fiberglass: 

  • Repair damaged sections of fiberglass insulation with proper foil duct tape.
  • If you have blown-in fiberglass in your attic or walls, seal all penetrations such as ceiling fixtures, wire and plumbing penetrations, light switches, and cracks in drywall
  • Check the internal condition of any “duct board” ducts or ducts internally insulated with fiberglass.  Unfortunately these degrade over time and cause the fibers to become entrained in the air.
  • If your health issues have not resolved, consider removing some or all of the fiberglass that could be causing them. 
  • Replace fiberglass insulation with ducts that are insulated with air bubble wrap, and walls and ceiling insulation with spray foam or cellulose insulation (however, be aware that cellulose insulation is treated with fire retardants to make it safe, which can cause other health issues to those who are sensitive). (nachi.org)

If you know or suspect that your health problems are being caused by fiberglass or VOCs that come from the fiberglass, keep a journal of how you feel during the day at different times, including where you are, what you are doing,  if the building’s HVAC is running, what you are wearing, eating, working with, etc.  It’s possible that you can find the link by putting the pieces together from your experiences, and from others’ experiences.  Research sites of others with environmental and chemical sensitivities, such as Fiberglassawareness.com, mychemicalfreehouse.net, and nontoxicforhealth.com (the latter two have a lot of scientific research on them), and don’t give up!