Tag Archives for " dust "

The Science of Dust

The Science of Dust

Dust.  It’s not just harmless dirt that builds up on fan blades until we can’t turn the fan on any more for fear of clumps flying everywhere.  It’s a combination of skin cells, pollen, dead bugs, bacteria, soil, dander and various fibers. (iaq.works)  Dust also carries SVOCs, or semivolatile organic compounds, that are emitted from materials and products like plasticizers from plastic products and flame retardants from upholstered furniture. "Unlike VOCs, that you can smell and that warn you of their presence, SVOCs are called stealth chemicals. They are odorless, ride on dust, and are insidious underminers of our health, "  says Marilee Nelson, co-founder of Branch Basics.  (wellandgood.com)  Then, there are the dust mites, which are microscopic organisms that feed on dust.  All in all, dust is even more disgusting than it looks!

My all-time least favorite chore as a kid was dusting.  It didn’t require a load of physical exertion, so it must have been the sheer tediousness of moving the same stuff to dust around it week after week.   We used lemon-scented Endust in the 70’s and 80’s, which actually should have made me a little giddy (it had odorless mineral spirits and 1,1,1-trichloroethane with a propellant blend of butane and isopropane, of which inhaled 1,1,1-trichloroethane acts as a central nervous system depressant and can cause effects similar to those of intoxication)...yikes!  (chemeurope.com)  Why haven’t we invented a way to keep the dust off permanently?    

I guessed the answer had something to do with static electricity.  Apparently, the “mechanism of particle adhesion” works against us in allowing dust to settle on furniture and objects in our homes.  According to Keyence.com, producer of static eliminators and ionizers, “When dust is carried on air currents generated by air conditioning and similar devices, the dust takes on a positive or negative static electric charge due to contact with various objects. Dust that has a positive electric charge will be attracted to objects that have a negative electric charge, and vice versa. The greater the amount of dust in the air, the larger the amount of dust that clings to objects within the room.

Also, if sources of dust (mainly people and clothing) are electrically charged, the dust that is generated from these sources is electrically charged as well. This attractive force generated by static electricity is known as “Coulomb force.” 

The solution to particle adhesion is to eliminate the static electricity from the object’s surface and from the air up to a few millimeters from the object’s surface.  This is easy to do using a static eliminator, which charges the air with ions.  This removes the static charge from the particles and prevents them from reattaching.  There are also lots of “anti-static” polishes on the market, however, their toxic ingredients may or may not be disclosed.

Also, the answer to dusting less also has to do with humidity.  Humidity does not reduce the literal amount of dust in your home; instead, humidity causes dust particles to adhere to one another, making them too heavy to travel through the air. Thus, dust particles are still present in your home, but the ideal humidity level makes dust particles quicker to settle and easier to clean.  

In addition, when the indoor humidity level is between 40 and 60%, dust mites are unable to thrive and spread. Dust mites prefer extremely humid atmospheres because they absorb moisture from the air in order to survive.

So, apparently there are two things that tend to keep dust (and dust mites) down to manageable levels: ionized air and the right humidity.  We fully endorse both!  Most of the HypoAir air purifying products include a bi-polar ionizer, which has the capability to kill germs at a distance by attacking them with the same ions that control the dust.  We also like to talk about keeping your home at the right humidity to fight mold growth and germ dispersion.  It’s a win-win!

With ionization and the right humidity in place, getting rid of the remaining dust should be manageable.  Cleaning experts give these tips to get the most out of your cleaning tools and time:

Get rid of feather dusters and dry cotton cloths, because they are simply flinging the dust into the air.  Also, don’t use damp cotton cloths, because they leave streaks of dust behind.  The best tool is a microfiber cloth (again, microfiber is better at holding a slight “charge” to attract dust) and your favorite all-purpose cleaner, like one of the following: 

  • HypoAir’s TotalClean, a non-toxic multi-purpose cleaner you can use throughout your home

  • Force of Nature, a non-toxic hypochlorous cleaner that can sanitize or disinfect surfaces depending on the concentration

  • Branch Basics, a non-toxic plant and mineral based cleaner

For wood surfaces, you can add some drops of a non-damaging essential oil to the spray bottle, so that wood surfaces don’t dry out and retain a nice shine. Orange oil is great for this purpose.  Since many ingredients are not disclosed on commercial dusting sprays, it may be tempting to make your own DIY dusting spray, and there are lots of recipes on the internet.  However, look at the ingredients closely, because vinegar is a key ingredient in many recipes, and it can damage many surfaces in your home.  

If an area has more dust than usual, or to avoid switching cleaning cloths too often, you can use your HEPA vacuum cleaner with a soft head attachment to “pre-dust”.  Of course, standalone HEPA filters running part-time or full-time will cut down on a lot of dust.  

Keeping the dust down in your home can lead to less allergies, sickness, and over time, better overall health because of the way ultra-fine particles can penetrate our lungs and migrate to different areas in the body.  With the right conditions (ionized air and the right humidity) and tools (microfiber cloths, non-toxic cleaners and a HEPA vacuum), regular dusting can be manageable, kind of like flossing your teeth.  Reveal the beautiful side of your home and get dusting!

Photo by Austin Ban on Unsplash

Q: Do Air Handlers Belong in the Attic?

Q: Do Air Handlers Belong in the Attic?

A: It depends!

(Don’t you love that answer?!)  Every one’s home is different, as well as where their home is built (climate), so there aren’t hard and fast rules, but we can surely show you the pros and cons of putting your air handler in the attic.

First of all, an air handler is part of a split system central AC unit.  In these systems, there are two distinct parts: one contains the condenser that changes the refrigerant from a gas to a liquid to release the heat from inside the house (the condenser is usually located outside), and a second part that contains the evaporator (which absorbs heat from the house air) and a blower to move air through ductwork to different rooms.  This second part is called the air handler and because it’s not super quiet and can take up a good amount of space, many people install their air handler in the attic.

The attic may or may not be a good location for your air handler.  Here’s how to know: is your attic conditioned, or unconditioned?  Conditioned attics are considered part of the building envelope and they are insulated.  Conditioned attics don’t have to be “finished” per se with drywall and nice flooring, but they do need to be air-sealed from the outdoors.  Air handlers CAN belong in conditioned attics. 

Unconditioned attics (also called vented attics) are exposed to exterior temperatures through ridge vents, gable vents, soffit vents or powered vents.  There is no “air conditioning” so humidity, dust, insects and extremely high or low temperatures are all present in an unconditioned attic.  Air handlers DO NOT belong in unconditioned attics.  Why?  

  • For one, the air handler is responsible for moving the air you breathe, and even a small leak in it or the ductwork will pull humid, dusty, unconditioned air from the attic into your home.  
  • Extreme temperatures cause your air handler to work less efficiently, which translates to higher heater and cooling costs.  
  • The air handler is an expensive piece of equipment that can cost thousands of dollars; to minimize breakdowns and maximize its life, it’s best to place it in a clean, moderated environment!
  • Accessing and crawling around a dirty, dusty attic makes routine maintenance or needed repair work more difficult.
  • If the condensate drain plugs up and overflows the pan under the unit, guess where that water will go?  Onto and through your ceiling!

“Conditioned space” in your home costs money, because it is part of the square footage that realtors count when valuing your home.  For this reason, homeowners and many builders prefer to stick the air handler “out of sight and out of mind” in the attic or worse, in an unconditioned crawl space.  Now that you know better, if you have the opportunity, give your air handler an “upgraded” installation spot in your home.  Here are some tips for finding that spot:

  • The air handler should be centrally located in the home in order to minimize ductwork run lengths to all rooms.
  • Closets are better than the attic, but without enough room to do maintenance on your unit, small closets are not ideal.  Without room to walk or reach around the unit, HVAC technicians will have a hard time making good sealed connections with ductwork, and if anything needs repair, it takes longer to do it, possibly requiring removal of the whole unit.

It’s tough to understand how this air handler and ductwork were installed in such a small space.  (Source: energyvanguard.com)

  • A large utility space is ideal.  You will not want carpet or hardwood below the unit, so that any water leaks can be cleaned up easily.  Good lighting also makes it easier for you to check on the unit from time to time, and to change any filters.  

When replacing your air conditioning unit, we hope you will give serious thought on where to locate the new air handler.  Giving it preferential space inside your home will give you quality air for years to come.  It’s important, however, to make sure that:

  • This room or large closet has its own air supply and return, because when air gets sealed behind closed doors (and you will want to close the door to isolate the unit acoustically), mold can develop.  This can be accomplished by placing a grille in the return of the air handler, and placing a supply grill in the wall or through the ceiling with a “jump duct”. This article from renowned building scientist Joe Lstiburek shows the flaws of different locations and how to overcome ventilation issues.
  • Locating an air handler next to a gas appliance such as a gas hot water heater can be problematic, unless it is a “sealed combustion” unit.  The air handler will cause the room to be under slight negative pressure while the fan is on, which can affect combustion and venting of the water heater.  
  • If your furnace is a gas furnace, you’ll need to make sure it also gets adequate combustion air.

If you can’t bring it inside your building envelope, you may consider a unit that doesn’t require big air handlers–namely, mini-split units.  One external compressor/condenser can supply several indoor units (evaporators), which are typically hung on the wall, with only small refrigerant and drain lines running between the inside and outside.  Where there’s a will, there’s usually a way!


Dealing with Earthquakes

Dealing with Earthquakes

Just like many other controversial topics, there is conflicting evidence on whether earthquakes are increasing.  Some news sites say that there is no increase in earthquakes; it just seems that there is an increase because reporting methods have gotten better (usgs.gov).  However, a journal for the insurance industry reports that earthquakes are increasing in US oil regions.  This 2021 article “reveals that tremors of above the magnitude of 2 on the Richter scale quadrupled in 2020…The oil and gas industry is contributing to the increased seismic activity through its practice (of) the saltwater disposal through underground injection.”  Oklahoma, Texas, Louisiana and New Mexico were the areas studied, and more frequent and larger events continue to occur.  In addition, new research published in 2023 confirms that fracking causes slow, small earthquakes or tremors.  Fracking is the process of injecting high-pressure fluids to extract oil and gas.  Using liquid carbon dioxide for fracking instead of wastewater could be better for the environment in order to keep carbon out of the atmosphere, but because it’s a liquid, it can still cause tremors and earthquakes.

California has hundreds of “fault” lines (a fracture or zone of fractures between two blocks of rock, which allow the blocks to move relative to each other) (usgs.gov), two of the most infamous being the San Andreas fault in southern California and the Hayward fault in the San Francisco bay area in northern California.  Here is a picture of what frequent earthquakes look like (source: earthquaketrack.com):

If you live in a zone where earthquakes are frequent, you’ll know that the effects of earthquakes are manifold. Here are some of them: (source: getuhoo.com)

Dust:  “A case study was done in New Zealand following the 2010 earthquake that hit Canterbury, along with its aftershocks. The data from the study shows that PM10 particulate matter levels hit 140µg/m3 over a 24 hour period, which is well over the National Environmental Standards for Air Quality (NESAQ) threshold of 50 µg/m3. The amount of PM2.5 concentration also hit 127µg/m3 at this time, about 90% of the level of PM10.”

 “The vibrations and tremors hitting buildings and homes loosens up dust and drives them into the air. Tectonic shifts can disrupt sediment and expose them to the air where they linger as particulates for days or even longer. Even in homes the jolt can release dust that is normally packed away and bring them out into the open, underscoring the importance of keeping a clean home.”  

We agree; it’s important to have dust control measures in place before a small or large earthquake shakes things up!  Here are our top ways of controlling it:

  • Minimize carpet and fabric furniture if possible

  • Frequent vacuuming with a HEPA vacuum 

  • Use of a MERV 13 filter (if possible) in your furnace/HVAC

  • Use of a standalone HEPA filter in areas where you spend a lot of time (living room, bedroom)

  • Brush and bathe pets weekly if possible

  • Keep several MERV and HEPA filter changes, as well as N95 masks, on hand for use during emergencies.

Fire and water damage:  According to earthquakeauthority.com, the primary damage in an earthquake is caused by surface rupture and ground displacement, when the ruptured fault produces vertical or horizontal movement on either side of it.  However, liquefaction is another odd consequence that damages pipelines too: solid soil will change into a “liquid” during violent shaking, causing support systems to fall away.  When this happens, pipelines break and fires can start, spewing all kinds of chemicals into the air, ground and water.  In this severe case, you should have an evacuation plan if this kind of disaster affects your immediate neighborhood.  If you are experiencing these pollutants from several or miles away, shelter in your home if possible, and keep windows and doors closed with the HVAC on “recirculation” mode with minimal fresh air.  Here are some ways to mimimize the pollutants you’re breathing inside:

  • Use of a MERV 13 filter (if possible) in your furnace/HVAC

  • Use of a standalone HEPA filter in areas where you spend a lot of time (living room, bedroom)

  • Keep several MERV and HEPA filter changes, as well as N95 masks, on hand for use during emergencies.

  • For fresh air, you can use a Window Ventilation Filter to keep smoke, dust and pollution out of your home. 

  • Units like the Germ Defenders and Air Angels will help to mitigate harmful contaminants by converting them to larger particles that will fall to the floor. 

Landslides and Tsunamis: Landslides are the movement of rock, earth, or debris down a sloped section of land, and are caused by rain, earthquakes, volcanoes, or other factors that make the slope unstable.  (nationalgeographic.org).  Obviously, this type of earth movement will trigger a lot of dust and pollution released into the air as earth and buildings and infrastructure are demolished in the path of the landslide.  Tsunamis are giant waves caused by earthquakes or volcanic eruptions under the sea. (noaa.gov)  The wave can cause catastrophic flooding upon hitting land, which brings building devastation and mold to the buildings that are not destroyed.   

There are “early warning systems” in major quake zones, however they can only provide warning to those outside of the epicenter (10 miles or more), and they only provide warnings of larger, more violent earthquakes. (caltech.edu).  

Preparedness is key.  In addition to the measures listed above, you can also prepare an evacuation kit in case you have to leave your home, which of course is useful in disasters other than earthquakes.  Judy.co is a company devoted to emergency kits that include water, food, power and tools so that families can survive for short periods following a disaster.  With advice from this page at ready.gov, you can build your own kit.  We sincerely hope that no one is injured or affected by such a disaster in their lifetime, but sadly in areas like northern California, this is not what experts predict will happen.  Earthquake risks can be high in the beauty of the South Pacific islands, the mountains of Mexico, and the plains of Oklahoma, so wherever you live, be aware and be prepared! 

Photo by Dave Goudreau on Unsplash

Insulating drafty windows makes a difference in air quality, not just energy savings!

Insulating drafty windows makes a difference in air quality, not just energy savings!

When you’re trying to make a whole house less drafty, you should go for the low-hanging fruit first.  That means big ol’ holes in the walls, floor or ceiling (like this disconnected register) come first.  If you don’t have any big holes, you can start on the smaller ones–and sometimes the smaller ones can add up.  That was the case in my sunroom. 

My sunroom is west-facing, which means in the summertime it gets brutally hot from sunlight, and in the wintertime it’s brutally cold from westerly winds.  On top of that, it’s fairly dusty and showed some of the highest counts of mold colonies in my home.  When I saw another cold front coming later in the week in December, I finally “made” the time to insulate the windows where I felt the drafts coming in.  I saw that the lower windows didn’t seal at the bottom when closed, AND the previous owner had cut the corners on the lift at the bottom for some reason (they rubbed on the trim?).  Due to these leaks, the room stayed quite “fresh”--meaning the CO2 didn’t really budge from outdoor levels unless I lit a fire in the fireplace on the other side of the room.  If you don’t have a CO2 monitor, I highly suggest getting one: here’s a portable version.

Therefore, the cons of my leaky windows easily outweighed this one “pro”: fixing them was a no-brainer!

Pros

Cons

Better ventilation (lower CO2)

More drafts of hot or cold air (higher energy cost)

More dust or pollution

More mold 

Excess humidity in house

Here are the tools I used: 

  • A spray bottle of TotalClean and several rags for cleaning the windowsills
  • Adhesive-backed weatherstripping in a suitable color to match your windows (low-profile like this one, ¼”, is good unless your windows are very misaligned) 
  • Scissors
  • Optional: A CO2 monitor is helpful–to see the effect on the room
  • Optional: Window locks in case the windows don’t lock afterwards (see below)

If you do have a CO2 monitor, leave the windows closed and take a CO2 measurement before doing the insulation work. You might want to do it while there are a number of people in the room, or you have a propane or natural gas stove burning (I know there are a lot of gas stoves out there!).  Extra people and gas appliances do two things–they consume oxygen and they give off CO2.  These should cause the CO2 to be higher than when the room is empty or no gas appliances are lit.

Next, just get down to it: use the TotalClean and rags to clean off the window sill where the lower half of the window seats.  If you have vertical sliding windows, find the best place to attach the insulation in the vertical track and clean that.  When the track is clean and dry, start peeling the adhesive backing off and apply the weatherstripping a little at a time, cutting it when you get to the end of the track. Close and lock the window to make sure it’s placed correctly.

If you find your windows don’t lock because of the extra height of the insulation (this was the case for my windows) there are a number of window locks available that can be easily removed if you have to open the window for ventilation.  I ended up getting a thumb-screw version that can be moved up a few inches if I decide to ventilate, while still keeping the window secure.  

That’s it!  When you have all of the insulation installed, close the window and repeat the CO2 reading, with or without activity (people or gas-burning appliances).  The CO2 levels should go and stay higher because there is less fresh air coming in.  Fresh air ventilation is needed in a home, but it’s best to do it in a controlled way, not just letting the air come in wherever there’s a small gap or crack.   For more ideas on how to air seal leaky windows, check out this video.

If you’ve completed an easy project that resulted in better air quality, let us know about it! 

Photo by Rob Wingate on Unsplash

What do our holiday traditions really cost?

What do our holiday traditions really cost?

Okay…we all know that visiting the Christmas Tree Lot the day after Thanksgiving can be really expensive, and prices get better the longer you can wait to get one.  That’s not what I’m talking about!   I wanted to know, are some of our traditions costing us in our health?  After my manager shared how his family “mysteriously” gets allergies every December after bringing home a live tree, I had to do some research!

As it turns out, Christmas tree allergies are real.  If you experience any of the following after bringing home a live tree or other live pine decorations, the pine may be an allergen, or it may be carrying allergens (advancedsinusandallergy.com).

  • Runny nose
  • Watery eyes
  • Sneezing
  • Coughing
  • Wheezing
  • Itchy eyes and nose
  • Dark circles under your eyes
  • Skin rash

Now that you may be making some mental connections, here is what scientists have found about homes with live trees:

  • Mold: pine trees can carry 53 different types of mold!  (Researchers at SUNY Upstate Medical University).  Many of these are allergens and especially so for infants and children.  The mold, which is attached to leaves, branches and bark, multiplies in your warm home and spores are released during the agitation of bringing the tree in, setting it up, placing lights and decorations on it and watering it.  A 2007 study found that apartments containing a live Christmas had a 6-fold increase in airborne mold, which did not return to normal until after the tree was removed.  Weed, grass and tree pollens were also found in the air during the time Christmas trees were in the house, because of course, live trees once lived in fields with other weeds and trees.  
  • The beloved pine scent emitted by Christmas trees is actually a family of VOCs called terpenes.  Terpenes are made naturally in the tree sap, and real or artificial terpenes are often used in pine-scented cleaning products and home fragrances.  Terpenes can unfortunately be allergenic to some people. 
  • Dust mites and insect droppings come with live and artificial trees that have been in storage because they naturally accumulate dust. 

Bringing home a live tree is a deeply-ingrained tradition for many American families, so unless your allergies become severe, simply treating your tree appropriately may help you to suffer a lot less this season!

  • Formerly, it was recommended to spray the tree down with water and allow it to dry naturally outside for a day or two, or blow off the water with a leaf blower before bringing it inside (advancedsinusandallergy.com).  However, water is just what mold needs to keep growing and multiplying!  Therefore, we’re going out on a limb here (pun intended) to say that the same EC3 Mold Solution Spray or  Remedy Mold Treatment Spray by CitriSafe that is safe for humans and pets, is a great treatment for live and artificial Christmas trees.  Yes, use that leaf blower on your live or artificial tree to remove dust outside (with a mask of course), and then give it a good misting of EC3 Mold Solution Spray or  Remedy Mold Treatment Spray over every branch (don’t be afraid to use too much).  This should drastically reduce the amount of mold in your home while the tree is up!  Treat live garlands, wreaths and other live decorations in the same way.
  • Dispose of the tree as soon as possible, because any mold that was not touched by the spray will continue to grow.  

If you opt for an artificial tree, you still may suffer from allergies if it’s improperly stored.  Here are some tips:

  • Storing trees and decorations in unconditioned spaces like attics and basements can expose them to mold and dust.  In these situations, don’t use cardboard boxes; change the storage container to a sealed plastic bin or optimally, make a little room in your conditioned space for storage.  
  • Use a mask when retrieving them out of storage.
  • Use a cloth misted with EC3 Mold Solution Spray or use CitriSafe's Remedy Multi-Purpose Mold Treatment Wipes to wipe down ornaments and lights before adding them to the tree. 

Scented candles and sprays may smell nice, but they can seriously irritate your respiratory system and add unwanted VOCs and toxic chemicals to your air.  Instead, we can show you a number of ways to add holiday fragrance without the allergies in this post!  With the vodka air fresheners mentioned,  if you have several spray bottles, you can “decorate” your home with different holiday scents by adding drops from an assortment of essential oils like this one

This holiday season, break the mold (pun intended) by dis-inviting mold and allergens from your decorating party: it will be less costly for your health! 

Check them at the door! (How to bring less contaminants into your house)

Check them at the door! (How to bring less contaminants into your house)

Oh, how I love to walk barefoot or bare-socked around my house!  It’s a pleasure that doesn’t happen often enough. With two (albeit non-shedding) dogs who constantly bring sand and dirt in from the outside, and my own habit of walking straight in from outside with my shoes on, walking barefoot only happens for a few hours after I vacuum and mop.  Vacuuming and mopping takes a minimum of 45 minutes to do, so how often does it get done?  Embarrassingly, not enough!

There are even more benefits to cleaner floors than walking barefoot.  After all, you and your pets are not just bringing in lifeless dirt…there are microorganisms like mold, pollen, bacteria and viruses in every grain of dirt.  These can wreak havoc on those who are more sensitive, and especially those who spend more time on the floor, like babies and young children.  At HypoAir, we’re all about avoiding bringing contaminants indoor whenever possible!

It’s hard to believe what you can’t see, so I was grateful to run across this article.   The hostess of this website became self-educated about mold after she and her family experienced numerous health problems from the homes they lived in, and she has a very informative website that includes interviews with experts!  She performed a test with a white towel laid at the door of her home, to catch dirt and mold particles as they are tracked in. She performed a mold test before and after two days.  Although the “before” mold test revealed some mold from the clean towel being stored in the garage, the “after” test was definitely more prolific and indicated that some colonies could be producing mycotoxins.  Yuck!  Unfortunately I know this is happening at my house in the woods during the very wet summer we’ve had….

This has prompted me to research strategies to avoid bringing that dirt, mold and germs in!  There are some ways that make a big difference.

  1. Leave your shoes at the door.  My main problem with this is time (like when I’m bringing in groceries), and sheer number of shoes.   Patience and dropping off loads at the door will take care of the first problem, but for the second one, If I had a “mudroom” this might be more easy to organize.   I’m not a shoe collector by any means, but I have a number of shoes that I like to wear outdoors!  This has led me to find a used low bookshelf and number of baskets so that I, my sister who lives with me, and any number of guests can feel comfortable storing them at the door.

  2. Find the best doormats for your situation, and use them!  When I went searching for “doormats” online, I was overwhelmed by the sheer number and diversity of them.  Then I refined the search to “best doormats for pets” or “best outdoor doormat”, etc. and read what people wrote about them.  I am even doubling up (one indoor, one outdoor) for more protection.Here are some good ones:

    1. Doormat for pet feet: I like the generous size and decor options for these rugs by PURRUGS, but they are made of polyester.

    2. Outdoor mat for removing dirt: 

      1. According to Spruce.com, coir (pronounced “coy”-er) is the best material for removing dirt: it’s made from coconut husks, so it’s scratchy and natural-looking.  A lot of coir mats are made with a rubber backing, which doesn’t let the dirt fall to the floor, but if you get a woven one with no backing like this one by Kempf ($43), you don’t have to shake it out as often. 

      2. For a modern look, Clean Machine Mats are made of Astroturf, but not all of them have the bright green color!  This one ($29) just takes a simple shake to empty all the sand off your porch.

    3. Indoor mat: Requirements for good indoor mats are that they need to be of a safe material that doesn’t create dangerous VOCs (polyester and PET may have endocrine-disrupting chemicals in them).  A non-slip backing is best, but solid rubber or plastic may harbor mold if moisture gets underneath, so check for mold during wet or humid weather.  Machine-washability is a plus!  

      1. Large and absorbent, these mats by Crate and Barrel ($135) are great for wet and muddy feet.  They can be spot cleaned or taken outside for scrubbing and hosing down.  The rug is made of polypropylene, which is quite durable and has a low off-gas.  The backing is made of rubber (20% recycled), which can give off a smell but doesn’t seem to be a complaint with this rug.

      2. Chenille is very absorbent and soft, which makes these rugs by Gorilla Grip a nice buy at $35-50 depending on the size.  They are machine washable!

      3. I love the idea of recessed mats, which are popular in commercial buildings and apartment buildings.  They “fit” into your floor and are very unlikely to slide around.  Water and dirt will also be more contained in a recessed mat, where you can easily vacuum it up.  You’ll need to create a standard-sized recess that is laid into your floor at the front door.

  3. If you have pets, teach them to stop at the door and wipe their feet! (cue cute video…)  More seriously, you can teach them to at least stop while their human helps them wipe their feet!  You can even hang a towel near the door for that purpose on a simple hook or more elegant towel rack.  You can also use  EC3’s Mold Solution Spray ($28 for 32 oz) for misting their fur to deactivate any mold spores they may carry in.

  4. Use a non-toxic additive or detergent to get rid of mold in the laundry.  EC3 products by Micro Balance are recommended by a number of experts and experienced laymen who know about mold!  This non-toxic, environmentally safe laundry additive ($29) is good for about 11-16 loads at the recommended dosage of 2-3 oz per load.  It’s great for washing those dirty door mats and washable shoes.  (moldfreeliving.com)

  5. For shoes that can’t be washed in the washing machine, spritz them with EC3’s Mold Solution Spray ($28 for 32 oz) before you put them back in your closet.  You can also spritz it on the indoor mat between washings.  (moldfreeliving.com)

  6. Vacuum and mop frequently(1-2x per week) in the entranceways of your home, if not your whole home.  At the beginning of this article, I was lamenting the time it took me to successively vacuum and mop the ground floor of my home (where the most dirt lies).  Well, this is the case IF you don’t have a combo vacuum/mop, which can be a total game changer!  I’m happy that I have all tile with only a few area rugs on this floor, which makes it the perfect candidate for such a machine. I grew up using cumbersome canister vacuums, which seemed to hit every doorjamb as I tugged them through the house.  My mother has already graduated to a Bissell CrossWave, and raves over it.  Here is a great review of the newest upright vac/mop combos, in which I’m sure you’ll find one that’s right for you.  The only problem with using water floor cleaners is that they tend to have chemicals of questionable toxicity in their proprietary cleaning solution (7 of 11 Bissell products earned a “D” grade on ewg.org).  If you use another solution during the warranty period, your warranty may be voided.  If that prospect does not bother you, this article gives some tips on making homemade cleaning solutions for your vacuum/mop machine that have non-toxic ingredients.

How to have clear sinuses

How to have clear sinuses

Going through yet another round of stuffy nose and headaches, I decided to research all the ways that I or my environment is sabotaging my sinuses.  

First of all, it could be sinusitis (also called rhinosinusitis): an inflammation of the paranasal sinuses, the cavities within the bones that surround the nose (Harvard Health).  Inflammation blocks the ostia, which are the narrow channels that drain into the nasal cavity, so that drainage becomes blocked.  Sinusitis can be caused by a cold, allergies, or a deformity such as deviated septum or nasal polyps.  Here are the different lengths of sinusitis (healthline.com)

  • Acute sinusitis can be caused by a cold, but then a secondary infection can happen once the sinuses get inflamed and blocked.  Technically acute sinusitis lasts less than 4 weeks.

  • Subacute sinusitis lasts from 4-12 weeks.

  • Recurrent acute sinusitis occurs when you have the same symptoms 4 or more times per year, but it lasts over 7 days each time.

  • Chronic sinusitis symptoms last over 12 weeks.

Well what is causing it?  

Normal sinuses are lined with a thin layer of mucus that traps dust, germs and other particles in the air. Tiny hair-like projections in the sinuses sweep the mucus (and whatever is trapped in it) towards openings that lead to the back of the throat. From there, it slides down to the stomach. This continual process is a normal body function.(American College of Allergy, Asthma, and Immunology) Here are some of the common irritants that can interrupt this process:

  • Dust:  A dose of good old dust, whether it’s from a woodshop, mowing the grass on a very dry day, or bringing out boxes from an attic, can overload the sinuses. The problem is that dust is a very complex mixture of irritants.  It can contain dustmites and their feces, chemicals, 

  • Pollen:  Plants have to reproduce, and sadly the weeds seem to be the worst offenders to our noses.  In addition, you’re not just imagining it: pollen really is becoming worse every year!  Check out our post on allergies here

  • Mold:  Mold is dangerous in that unlike other allergens, it can colonize and actually grow inside your sinuses, since they are warm, moist and dark.  Then, the rest of your body is susceptible to other colonizations as you breathe the mold spores and swallow them with mucous.   

  • VOCs:  VOCs can cause inflammation that leads to sinusitis.  A 2001 study showed that patients with chronic rhinosinusitis were exposed to higher levels of volatile organic compounds than healthy subjects.

We at HypoAir are not medical professionals, so we can’t recommend the techniques and drugs that doctors use for prevention and relief of sinusitis.  However, natural techniques are generally milder, and many of our clients are very sensitive to medications anyway, so we are glad to report that sinusitis can often be prevented or treated easily!  Here are some of the ways to do it:

  • I have to say that mask-wearing definitely cut down on my nasal issues when I was required/bothered to wear one.  Why?   Masks filter out many of the airborne contaminants listed above that can trigger sinusitis, as well as germs like bacteria and viruses.  Two+ years into the coronavirus pandemic, the stigma of wearing a mask is virtually nil, and there are a plethora of masks you can use to protect yourself against pollutants and germs alike (see our post on masks). 

  • Nasal irrigation is the number one defense against sinusitis according to Harvard Health (steps included in the article).  Whether you choose to use a bulb, small pitcher or neti pot, the homemade rinse works great to flush away the irritants that can block drainage and start a nasty infection.   It’s recommended to do this daily if you can!

  • Hydrate–your body as well as your nose!  Drink plenty of water during the day, and use a plain nasal saline spray several times a day if you are in a dry environment.  Adding a drop of food-grade tea tree oil or oregano oil (oregano oil is a bit harsher) to the saline spray adds a layer of antimicrobial protection to your spray. 

  • Avoid being unprotected in moldy and dusty places.  If you have to go down into a moldy basement or into a dusty attic, make sure to wear an N95 or respirator mask that seals well, and don’t take it off until you are safely in a clean place. 

  • Keep pollen, dust and pollution out while letting fresh air into your home, by installing some Window Ventilation Filters in your open windows.  They are easy to install and can be vacuumed a number of times before replacement.

  • Neutralize pollutants by adding a bipolar device by HypoAir to your home.  Positive and negative ions neutralize mold and germs by damaging their outer layers, and they cause small nanoparticles to stick together and drop out of the air in order to avoid breathing them in.

  • Be very vigilant about humidity levels in your home, so that mold does not gain a foothold.  You can monitor humidity easily using our inexpensive Humidity Sensors to maintain humidity between 40-60%.  If you see any water intrusion into your home, make sure to deal with it promptly to prevent mold growth! 

  • Use a MERV 13 filter (if possible) in your furnace/HVAC and change it regularly!

  • Use a standalone HEPA filter in areas where you spend a lot of time (living room, bedroom)

  • Clean as often as you can using a non-toxic, unscented cleaner: TotalClean fits the bill perfectly!  Safe to use around food, people and pets, TotalClean is the solution to replace all of the VOC-producing cleaners that can irritate and inflame sinus pathways. 

Think about the agony of sinusitis or a sinus infection and the time you lose while you battle it:  isn’t an ounce of prevention totally worth a pound of cure?  We think so!

To Vent or Not to Vent the Dryer Indoors?

To Vent or Not to Vent the Dryer Indoors?

This was a tricky question.  We understand that many people live in poorly planned homes where they are not allowed to make changes.  However, venting a dryer inside has a lot of disadvantages, even health dangers.  It all comes down to knowing that more than just “hot air” comes out of the dryer; this is why they are supposed to be vented to the outdoors.

First of all, NEVER EXHAUST A GAS (propane or natural gas) DRYER TO THE INDOORS.  This is absolutely a safety hazard, because the combustion gas exhaust (including carbon monoxide and NOx) are mingled with that hot air, and no filter is going to remove combustion gasses.  You would be poisoning your home air quality.  If you have a gas dryer and do not see a way to install a vent to outside, stop right here and either change out your dryer for an electric one (preferably a heat pump dryer, which does not require a vent), or move your gas dryer to a location where you can exhaust the vent outdoors (which would involve moving the gas line, too).  If your dryer is electric, you can keep reading.

So, let’s first talk about what is coming out of your dryer vent.  

  1. Obviously, warm air is coming out, because, after all, if your dryer is not heating your clothes, it’s likely not drying them.
  2. Water vapor:  This is where all the water from wet clothes goes–it evaporates and goes out the vent.  Majorly humid air here.
  3. Dust: You might collect some lint from your clothing on the dryer screen, but a lot of fine dust goes right through the screen into the vent line and outside.  This is why, when dryer vent lines are not sealed well, or they come loose, the laundry room suddenly starts to become very dusty!  And, vent lines should be cleaned of dust periodically so that they don’t become a fire hazard.  

In the wintertime, it might be tempting to redirect that hot humid air back into your home to save some money on heating and humidification!  However, most people who do vent inside either don’t care about the air quality or don’t keep up with the maintenance needed to do it right.  Here are the ways that venting inside can go wrong: (Clothes Dryer Moisture Activity)

  1. With no filtration, a lot of lint gets spread around in the laundry room (and surrounding rooms and even the rest of the home via the HVAC ducts).  If anyone in your home is sensitive to dust or prone to asthma, this is not acceptable.
  2. With filtration, you may be putting the dryer vent under too much pressure to keep the air flow up. Low air flow can cause the dryer to run longer.
  3. Low air flow and lint buildup in the dryer vent can cause a fire.
  4. The laundry room (and the surrounding rooms) can get too warm when you run the dryer in summer.
  5. The laundry room (and surrounding rooms) can get too humid and create a risk for mold when you run the dryer in summer, or anytime that the humidity in the home is already high.  For every load of laundry you dry, you are venting up to a gallon of water in condensation from your dryer. This will create a sauna in your laundry room, which can cause wood to swell, paint to peel, and mold to take hold.  (Eight Problems with Indoor Dryer Vent Kits)
  6. Venting a dryer indoors is against code (illegal) in most states.
  7. There have been documented complaints that the fine particulates of lint that escape from the reservoir can cause the smoke detector to go off.  This is proof that there are loads of  particulates coming through indoor drying vents. (Eight Problems with Indoor Dryer Vent Kits)

Needless to say, the problems with venting indoors are legion. 

We want to empathize with tough living situations.  Some people live in an apartment or home that has an improvised laundry cubby in the middle of the building, and the owners did not install a vent.  Unless the laundry room is sitting over a crawlspace or basement with an unfinished ceiling, it can be difficult to install a ventline to the outside, even if you have an agreeable landlord.  In many situations telling a landlord about the problem will not solve the issue.  Sure, there are lots of positive comments about “ventless dryer filters”, but many other users are not reporting the huge humidity problems in their laundry room after drying just one load.   For all these reasons and more, we want to be kind and say that indoor dryer venting is ok, but in the end the safety considerations outweigh it.

So, here are some options:

  1. If you have the budget, plan to stay in your home a long time or are able to take a dryer with you when you move, consider purchasing a heat pump dryer (which is ventless).  
  2. If the landlord is not willing to install a vent, but the room has a window that opens, explore the options of a Dryer Vent Window Kit ($30-37).  You may also want to add a window lock if you’re permanently installing it in a ground floor window.
  3. OR, move the dryer to a room that has a window and run an extension cord to it, which would have to be plugged/unplugged every time you do laundry. 
  4. Run an extra spin cycle on your wet clothing to wring out more moisture, and air dry clothing on a rack.
  5. Offer to trade services with a friend who has a properly vented dryer (meal prep, car wash, dog walk, use your imagination!)
  6. Take your laundry to a laundromat.  

Dryers and laundry rooms in general require more planning than you think!  We tried to be creative and make the most of a difficult situation.  If you have another alternative that works for you, we’d love to hear about it!

Photo by Raychan on Unsplash

How to keep MILDEW out of your CLOSET

How to keep MILDEW out of your CLOSET

Closet doors are meant to keep closed, right?  Unless you are Martha Stewart, it’s likely your closet doors don’t stay open very long–if they close to begin with!  The problem comes when humidity and closed doors combine for a stinky problem: mildew and mold.

We sometimes think that mildew is a less toxic form of mold, but it is still mold nonetheless.  Mildew is a subclass of mold that exhibits a white or gray, flat, powdery growth, while the rest of the molds can get more fuzzy and colorful.  Both release spores, but unlike other molds, mildew doesn’t penetrate surfaces and grow into the materials it lands on (though it can still cause cosmetic damage). Instead, it grows on top of flat surfaces and often collects in places like cardboard boxes or your vintage leather jacket in the closet.  Not good!  (What is Mildew, Really? The Difference Between Mold and Mildew)

Since we know that mildew is a form of mold, we know that it needs several things to grow: a food source (ie. leather, clothing, and dust in general), moisture (even excess humidity) and air (although stagnant air is best because lack of circulation keeps humidity at surfaces high).  So, the best ways to keep mildew at bay in closets is to:

  • Clean out the dust and seal off any sources of dust

  • Keep the humidity down and ventilate

  • Store items for longevity and air circulation 

How the heck does dust get in the closet when the door’s closed?

Incredibly, some closets are like dust magnets.  If your closet is part of a tiled or vinyl floor area, dust bunnies can usually slide right under the door due to the slick surface.  If you have any penetrations in the ceiling (like a light bulb), then your closet may be part of a hidden circulation system where the framing in your walls conducts air currents throughout your home.  For example, closets near bathrooms may unknowingly supply air to the bathroom exhaust fan, if the fan’s ductwork is not sealed well in the attic or the lightbulb box is not sealed to the ceiling.  Then there are the closets that double as storage areas and HVAC equipment rooms.  If the HVAC unit is not sealed well, it just pulls air from the surrounding home into your closet.

  1. Seal

The way to keep out the dust is to seal these small air passages: at the ceiling, remove the light fixture and either use a caulk gun (less messy) or a spray foam can with a straw (very messy, be sure to cover everything!)  to seal the electrical box to the drywall.  If the closet is an upper story, you may be able to do it from above in the attic with less mess, and sealing all the ceiling penetrations may help with dust house-wide.  If you notice a lot of dust forming on the floor, it may be worth caulking the baseboards to the floor (if it’s tile or solid-surface) to seal that up as well.

  1. Clean 

Next, removing the dust should be part of a larger goal to store items properly so that cleaning will be easier and mildew will be less likely to form.  You’ll need a HEPA vacuum with brush attachments, and various storage containers.  If possible, empty the closet.  This will allow you to see all the walls and floor to see if there are any water leaks coming in that could be causing the mildew.  If not, use the vacuum to clean ALL the surfaces so you can get a fresh clean start!

It’s a great time to wash clothing and purge any items that you don’t use anymore by donating them.  Clean clothing is less likely to smell and deteriorate from body sweat and dust mites as well.

Stop right there!  If you had mildew in your closet before, you need to make ventilation changes to stop it from recurring.

  1. Ventilate/dehumidify

Mildew sometimes forms in closets because of lack of ventilation.  The great thing about moving air is that it lowers the moisture content of surfaces that come in contact with it.  If the air is not moving, the moisture content of surfaces tends to equalize with the stagnant air, and over time, mold is able to grow.  Also, if your closet is located on the corner or north side of a building, the insulation in the wall may not be sufficient to prevent warm house air from causing condensation on the cold wall.   Here are some tips:

  1. Refill the closet

Ok, you can start restocking the closet but remember this important point: maintain space between items so that air can freely circulate!  Don’t overstuff or compact items against the wall, either.  Wire shelving is great for maintaining circulation from top to bottom, too.

Storage containers matter, too–if possible, don’t use cardboard boxes because cardboard holds moisture, and it’s a favorite food for all kinds of pests: mold, roaches and silverfish like to eat it, and mice like to use it for bedding!  If you’ve cleaned and dried your clothing and excess bedding, packing them in clear storage bins is ideal so that you can easily see what’s in each.  For wool and moth-prone items, you can add cedar blocks to the bin to keep pests out.  These garment bags are great to keep dust off hanging clothes.

After mildew remediation, it’s important to check on your closet at least every few weeks until you’re sure that the changes are producing their intended effect: the ability to close the closet door without mildew taking root!

Photo by Annie Spratt on Unsplash

Actinobacteria: Another danger lurking in Water Damaged Buildings

Actinobacteria: Another danger lurking in Water Damaged Buildings

Avoiding mold and mycotoxins has taken a major share of the spotlight in healthy home discussions, and for good reason, because they can elicit major allergic responses in many people and disabling immune responses in very sensitive people.  However, there is another organism that grows right along with mold in moist environments, and it’s often overlooked even though it can produce the same types of reactions.  Some types of bacteria are unique enough to be in a class of their own, called actinobacteria.  

Here’s a short refresher from an article about bacteria, endotoxins and exotoxins:  bacteria can be classed into two different groups: “Gram-negative” or “Gram-positive”.  These classes are based on a test developed by scientist Christian Gram in 1884, which differentiates the bacteria using a purple stain.   According to webmd.com, bacteria either have a hard, outer shell, or a thick, mesh-like membrane called peptidoglycan.  The hard outer shell will resist the purple stain, and show up as a red color.  These are called “gram negative” because the purple stain did not show.  Bacteria with the peptidoglycan absorb the purple stain much more easily and are called “gram positive”.  The stain also tells many more characteristics about the bacteria and the way it interacts with treatment. 

Going back to actinobacteria (also called actinomycetes), they are a diverse group of gram-positive bacteria, meaning they have that mesh-like membrane called peptidoglycan. However, they resemble molds (fungi) because they are adapted to life on solid surfaces and they can produce mycelium (branching structures) and dry spores like most fungi. Actinomycete spores are known to be important air contaminants in occupational environments, such as agriculture and waste composting facilities, and have recently gained special attention as indicators of mold problems in buildings. They do not belong to the normal microbial flora in indoor air but have been found in buildings suffering from moisture and mold problems. (Characteristics of Airborne Actinomycete Spores)  One class of actinobacteria, called mycobacteria, include the types of bacteria responsible for tuberculosis and leprosy.   These actinobacteria require iron for growth, and in the human body, will destroy red blood cells in order to acquire the iron it needs.

Actinobacteria, which occur in both terrestrial and aquatic habitats, are among the most common groups of gram-positive microorganisms in nature.  Living in soil, actinobacteria decompose organic matter and display antagonism against other bacteria and fungi, with which they compete for nutrients. Actinobacteria have incredible abilities to survive under extreme conditions in their natural environment and have been found in strongly saline soils, soils with a high content of exchangeable sodium and/or magnesium ions, and heavy clay soil which is submerged by water.  (Discovery of Actinomycetes from Extreme Environments with Potential to Produce Novel Antibiotics).  If they can live in these extreme environments, it’s not too much of a stretch to find them indoors in water-damaged buildings (WDB) and indeed, they thrive there too.  In a 2017 study of an office building in the northeast US which had a history of water incursions via roofs, walls, and pipes, actinobacteria were detected in 74% of dust samples, and thermophilic actinomycetes (unique high-temperature aerobic bacteria) were most predominant (81%) among the three types.   In analysis of building occupants who participated (105 participants out of 136 occupants), the increasing thermophilic actinomycetes levels in floor dust were significantly associated with decreased pulmonary function and increased odds of having symptoms reflecting possible granulomatous disease, particularly shortness of breath on exertion, flu-like achiness, and fever and chills.  Prevalences of the three granulomatous disease-like symptoms among the occupants were similar to those reported in another study of a large office building with eight hypersensitivity pneumonitis and six sarcoidosis cases, a long history of moisture incursions, and high fungal and bacterial contamination.   

Dr. Ritchie Shoemaker, an expert on mold illness and CIRS, published the paper Exposure to Actinobacteria resident in water-damaged buildings and resultant immune injury in Chronic Inflammatory Response Syndrome in 2021.  In it, he details some of the interesting facts about actinobacteria that many people do not know:

  • Geosmin is a VOC that accounts for the characteristic musty smell found in many WDB, and many actinobacteria also produce this VOC, creating the logical fallacy that the smell found in WDB buildings is only due to mold growth.  
  • Certain species of actinobacteria live on humans: on our skin and in mucous membranes and genitourinary tracts.  He denoted these HH actinobacteria (for human habitat), as opposed to SH actinobacteria (for soil habitat).   The interior of WDB are usually colonized by HH actinobacteria much more than SH actinobacteria; this is not the same for fungi, because WDB are easily colonized by outdoor (SH) fungi.  (Airborne Bacterial Communities in Residences: Similarities and Differences with Fungi)  
  • Dr. Shoemaker developed indices for exposure to actinobacteria showing differences in subsequent immunoreactivity in Chronic Immune Response Syndrome (CIRS) patients for actinobacteria from human skin carriage, HH, as opposed to SH actinobacteria.  
  • He theorized that the “toxin” that causes the immunoreactivity is not exotoxins, like normal gram-positive bacteria, but extracellular vesicles of 20-150 nanometer size that carry potentially inflammatory molecular signaling compounds from inside the cell wall to the outside. Vesicles are known to contain a variety of charges including nucleic acids, lipoproteins, enzymes, and toxins.  

“Better Health Guy” Scott Forsgren, Functional Diagnostic Nutrition Practitioner interviewed Dr. Larry Schwartz, an indoor air expert with a specialty area is assessing, testing, and creating solutions to make homes and workplaces environmentally safe for patients with inflammatory illnesses, about actinobacteria.  According to Dr. Schwartz, one can get treated for symptoms of CIRS (of which there are 37), but not necessarily get to the root cause.  However, if their blood is tested by GENIE (Genomic expression: Inflammation Explained), root causes for CIRS can be discovered.  “We found over 2,000 patients that have taken the GENIE test. About 42% of them are being triggered by Actinomycetes. The next largest percentage was endotoxins. The least percentage was the mycotoxin.”   (podcast: Episode #171: Actinomycetes with Larry Schwartz, BSME, MBA, CIEC)  Some background on GENIE:  this test was developed by Dr. Shoemaker and Dr. James Ryan, a molecular biologist, who have collaborated on genetic testing since 2011. GENIE is a gene expression assay composed of 188 genes that is performed on a single blood specimen. It reveals gene expression abnormalities found most often in patients facing CIRS illnesses. Typically it's done repeatedly, once before treatment for CIRS, after the first eleven steps of the treatment protocol, during or after VIP treatment. (vasoactive intestinal polypeptide). VIP is a naturally occurring human neuropeptide which affects multiple pathways in the brain and throughout the body, and it’s given as a low-dose nasal spray to benefit patients with severe CIRS.  GENIE results will show if the patient's metabolism is improving as their treatment progresses.

Dr. Schwartz’ research exposed that the major “factory” of actinobacteria (he calls them “actinos” for short) is the bedroom, because of the time we spend under covers (warm temperature) and the amount of skin cells that are deposited in the bed.  He also characterizes showers, crawlspaces and basements and drains as places where actinobacteria tend to multiply because of constant moisture.  He has a bedding protocol for cleaning bedsheets, and drain “protocol” on how to clean drains on a regular basis so that actinobacteria will not continue to proliferate in them.  (check out minute 59:17 of the podcast for these protocols).  Dr. Schwartz also advocates for use of HEPA filters, PCO devices (like the Air Angel Mobile) and bipolar devices (like the Mold Guard).  We would also add that the use of bathroom exhaust fans and humidity control are paramount for lowering relative humidity.  

Dr. Schwartz acknowledged that similar to the way pathogenic mold makes mycotoxins,  many pathogenic species of actinos often create a chemical called mycolic acid, which may be the allergy trigger for CIRS patients.  Dr. Ritchie Shoemaker also found that mycolic acids played a role in inducing T-cell responses (Exposure to Actinobacteria resident in water-damaged buildings and resultant immune injury in Chronic Inflammatory Response Syndrome)  According to the physicians with which Dr. Schwartz consults, although actinos can trigger inflammation and CIRS, they are not necessarily triggering histamines, and mast cell activation, because mast cell activation is primarily a histamine-driven effect. 

As for testing, EnviroBiomics is the only lab known by Dr. Schwartz that does next generation sequencing (NGS) to determine levels of actinos in home samples. Using special lab equipment called NGS processors, they give the in-depth degree of data on the speciation of actinos and their concentrations.  Dr. Schwartz can analyze the results of these test reports, in conjunction with at-home or virtual visits, to determine what may be exacerbating CIRS symptoms.  In one case, a client who lived in a farmhouse on 3 acres had CIRS, but the cause was not in his home.  It turned out that a neighboring property had a dilapidated barn with rotting hay in it (“farmer’s lung” disease comes from the actinobacteria in rotting hay), and correction of the ventilation in his home significantly improved his symptoms.  

Now for the good: despite its ability to cause illness, scientists and researchers have discovered how to harness actinomycetes for healing purposes.  Antibiotics are a class of molecules used for the treatment and prevention of bacterial infections.  These bioactive compounds are produced naturally from different species of fungi and bacteria, but the most attractive class of microorganisms that are able to produce these secondary metabolites are actinobacteria, in particular, actinomycetes. The importance of this order is due to their abilities to produce different classes of antibiotics in terms of chemical structure and mechanisms of action. Moreover, different genera and species of actinomycetes are able to produce the same class of antibiotics and, in few cases, the same chemical compound.  Thanks to antibiotics and the research developed in this field, many infections are now treatable, and life-quality/life expectancy are better than in the past.  (Actinomycetes: A Never-Ending Source of Bioactive Compounds—An Overview on Antibiotics Production)  

In short, actinobacteria can be confused with mold because of many similarities: how they grow, the environmental conditions they prefer, what they smell like, and what symptoms they cause in humans.  The good thing is that regular cleaning of areas like the bedroom, bathroom and drains to remove dust and allergens also removes food for actinobacteria.  In addition, a whole-home approach also examines the ways that toxins from actinobacteria inside walls and even outside can enter the home via leaks and negative air pressure.  When cleaning protocols are introduced and these air pathways are addressed, actinobacteria numbers start to dwindle and the homeowner’s health increases.  Sometimes it takes a trained eye to discover where they are flourishing, but by knowing their preferred habitat and via testing, they are not completely “in the dark” anymore! 

Photo by Ozgu Ozden on Unsplash