Category Archives for "Air Quality"

Why choosing “Non-Toxic” is not only good for you, it’s good for your grandkids (and great-grands…)

Why choosing “Non-Toxic” is not only good for you, it’s good for your grandkids (and great-grands…)

Hmmm.  

A new study seems to say that the genes we inherit and pass on are not entirely a product of simple reproduction.  They are also influenced by the toxicants we are exposed to by accident, or even as a result of ignorant or uninformed choice.

The title “Multiple generation distinct toxicant exposures induce epigenetic transgenerational inheritance of enhanced pathology and obesity” is very foreboding and makes me think, how are there any “normal” kids born at all?  

It seems that each generation in the US (and probably world-wide) faces a different main toxin.  For example, the insecticide DDT was a major concern in the 1950s and 1960s, followed by plastics starting in the 1970s, dioxins in the 1960s and 1970s, and then the fungicide vinclozolin and herbicides glyphosate (Roundup) and atrazine in the 1980s (still used).  Researchers used rats to approximate the genetic effects by injecting them with agricultural fungicide vinclozolin in generation 0, jet fuel in generation 1, and then then pesticide dichlorodiphenyltrichloroethane (DDT) in generation 2.  They then continued to breed the rats to generations 3, 4 and 5 to analyze the changes in their genetics and pathologies that presented.  

Some results from the study: 

  • The diseases were not all “additive” meaning that each successive generation had a higher chance of acquiring them, or worse prognosis.  It varied per disease; for example, kidney and ovary pathologies tended to reach a maximum and plateau; however, obesity tended to become more additive with each generation’s exposure to toxicants.
  • Females seemed to be more affected in later generations than males.  
  • Generally, higher pathology was observed in the F4 and F5 generations. 
  • Multigenerational exposure to distinct toxicant exposures promoted transgenerational inheritance of higher disease frequency for nearly all the different diseases examined. 

Wow, given that each generation (and nowadays probably more accurately, each decade) is exposed to new toxicants, we really are stepping through a minefield when deciding where to live, what to do for a living, which personal products to use, which cleaning products to use, and even which food to eat.  The consequences show up not just in our generation–we are reaping what our grandparents sowed and we are sowing for our grandkids.  The same effects seem to be present for electromagnetic fields (EMF), as Barrie Trower, physicist and Royal Navy microwave weapons expert on EMF radiation, has warned (see our article here).  

Finally, I’ll try to end the doomsday thinking with this: “normality” or lack of genetic damage is probably a privilege given that avoiding toxins actually costs A LOT.  Here are some of the headlines that bolster this conclusion:

  • In a 2012 study examining race- and income-based disparities in cancer risks from air toxics in Cancer Alley, Louisiana, cancer risk of air toxics not only disproportionately affects socioeconomically disadvantaged and racial minority communities, but there is a gradient effect within these groups with poorer and higher minority concentrated segments being more affected than their counterparts. 
  • The lack of clean drinking water in Jackson, Mississippi seems to be a complex story of population decline, poverty, racism, politics, mismanagement and theft. (Jackson water crisis flows from century of poverty, neglect and racism)
  •  About 73 million people live within 3 miles of a Superfund site. Compared to the general population, the population within this range is more low-income, has more indigenous and people of color and is more burdened by other environmental stressors (e.g., poor air quality, lead paint, etc.). (Supporting Environmental Justice at Superfund Sites)
  • Most people agree that organic foods are better for your health than non-organic.  However, it costs on average 21% more to buy organic, with the majority of cost difference in meats.  (How Much More Do Organic Groceries Cost?

Despite the socioeconomic barriers to health, I think the best tool for achieving multi-generational health is research, knowledge and a “healthy” skepticism of heavily-marketed products or ideas. Erring on the side of caution is a good thing!  Is there reasonable concern over drinking water purity?  When you can, buy or purify your water. Is there reasonable concern over air quality?  When you can, use a mask or air purifiers.  Is there reasonable concern over food quality?  When you can, purchase the foods that you believe are safe. Genetically, at least, it is true that “The parents have eaten sour grapes, and the children's teeth are set on edge.” Look out for the sour grapes!  Additionally, if you have the means, you can get your DNA analyzed so that you can make lifestyle changes to promote the best outcome in whatever weaknesses are found.  For those who don’t have the means to buy an analysis, there are studies and trials that may be free.  Thankfully, DNA tools are no more the exclusive domain of the scientific research community, so the news doesn’t have to be all bad.  

Photo by ANIRUDH on Unsplash

Ancient homebuilding 101: How did ancient people prevent mold in their homes?

Ancient homebuilding 101: How did ancient people prevent mold in their homes?

Mold is an ancient problem, the most infamous account of which is in the 14th chapter of the book of Leviticus in the Bible.   Although it’s described as a “plague of leprosy” in the King James translation (verse 34), the references to “ingrained streaks, greenish or reddish, which appear to be deep in the wall” (verse 37 in New King James translation) are hallmarks of mold.  Indeed, some scholars investigating the meaning of the Hebrew word “Tsara’at” that was translated “leprosy” have inferred from ancient skeletal evidence and modern symptoms of mold exposure that a better translation may have been “mold”.  (Mold: “Tsara’at,” Leviticus, and the History of a Confusion).  Going forward with this assumption, the prescription for mold in the ancient Hebrew home was inspection (by the priest), identification (by shutting up the house and seeing if the mold grew), remediation (empty the house of everything valuable, remove the stones and plaster, and replace them with new stones and plaster), reinspection and cleansing, and in the case of last resort, demolition (complete dismantling and removal of the house). 

Has the problem (or plague) of mold gotten worse since ancient times?  Maybe so.  After World War II, a housing boom generated the need for faster and cheaper construction and made gypsum wallboard (drywall) much more popular than plaster as a building material.  Drywall is composed of compressed gypsum between two layers of durable paper. Gypsum readily absorbs water and dries slowly, while paper supports mold growth very readily. Since mold growth can occur within 24-48 hours of a water event, according to the US EPA, this is a perfect recipe for mold growth (just add water!).

The housing boom also caused quality of construction to decrease as volume increased, allowing for water problems to happen more frequently. “Back in the days of plaster, brick and stone construction, we didn’t have mold problems like we do now. This is in part because mold doesn’t grow on those materials very easily, if at all. Drywall, on the other hand, is like a Petri dish. What’s worse is that drywall is an ideal growth medium for Stachybotrys, the black toxic mold referenced above, because of its high cellulose content. Nearly every mold will grow on drywall given the right moisture levels, but Stachybotrys has a field day with it.  The final component of the perfect storm, which has made mold into the problem we now face as a society, here and internationally, is that our buildings are built so tightly, in the name of energy efficiency. Ever since the fuel crisis in the 70’s, there has been a huge push to reduce energy usage and create a more comfortable living environment. We have walls stuffed thick with fluffy insulation. Having a small utility bill is a bragging right at cocktail parties.” (A Brief History of Mold)

We can see that there are three things we need to consider in homebuilding to prevent the dreaded “m” word: design (for natural ventilation), construction technique (to avoid water intrusion and decay) and materials.  Here are two examples of how ancient people incorporated these mold-fighting aspects into their homes, knowingly or unknowingly:  one is from Israel and the other is from Egypt.

Building techniques in first-century Israel:

According to nazarethvillage.com, villagers in Israel often built homes on the bare ground.  They could dig into soft limestone to make caves for water or wine storage, but often just used what the topography offered.  “Building on sloping bedrock requires great care in setting the first course, starting from the lowest part of the foundation and working upwards step by step. The bedrock footing is flattened and slightly stepped, but does not need to be completely level. By fitting stones into the uneven footing, the force of gravity will secure the buildings onto the bedrock. Using the land as the ancients did makes a lot of sense – there is less to dig and less to build.”  (Site Excavation)  The mortar used to hold the stones together was primarily earth, chalk (calcium carbonate), leftover straw (to add strength and reduce cracking) and a small amount of hydrated lime for durability.  The chalk is excellent at absorbing excess moisture from the air (reducing humidity inside), while the lime also inhibits fungal growth (keep reading for more benefits of lime!).  (Mortars for building and plastering in antiquity)

House windows in first-century Galilee were typically placed relatively high in the wall for maximum ventilation and privacy. Ventilation, as we know, can discourage mold by allowing ions in the fresh air to reach interior surfaces. (Windows)  The same principles were used in design of the homes, which featured a central courtyard with rooms added around it; thus fresh air could flow through the rooms whenever doors were opened to the courtyard. 

Preparing the house for plastering inside requires placing “small chinkstones and mortar to fill cracks and create a flat substrate for the interior plaster. Although obscuring the beautiful view of exposed stone masonry, interior plaster was necessary for insulation and to prevent household pests from taking over.  Plasters also improve interior lighting by brightening up the colours of the walls. We discovered that mixing chalk with the earth plaster gives a bright yet warm tonality to the home. The homes of more wealthy residences and public buildings – such as our synagogue – were finished in white lime plaster and occasionally painted.” (Interior Plaster)

Building techniques in ancient Egypt:  The following facts were taken from the article Homes and Mud-Brick Construction in Ancient Egypt, which references the report by Virginia L. Emery, University of Chicago, UCLA Encyclopedia of Egyptology 2011, escholarship.org:

Unfired mud brick houses were common in ancient Egypt, from the simplest abodes to the grandest of palaces.  Mud brick had several advantages over stone:

  • Brick ingredients were available virtually everywhere (sand, clay, and silt combined with chopped straw or dung as temper and binding agent)
  • Mud bricks are quicker to fabricate than quarrying stone, making them more economical in that sense
  • Mud bricks are quicker and easier to build with because they don’t require the trimming or fitting that building with hewn stone demands. 

“Mud-brick walls could be constructed directly on an unprepared ground surface, though more commonly were provided with brick foundations and wall footings laid in trenches upon a bed of sand... Occasionally, particularly along high- traffic routes, the base of the wall at ground level was protected by a footing of stone, in an effort to minimize the undercutting of the wall due to water or wind damage and traffic; stone elements also could be included in the wall proper, being most common at the quoining of building corners.”

The article Mudbricks give clues to understanding the Bible, which referenced the article Mud Bricks and the Process of Construction in the Middle Bronze Age Southern Levant, confirms that unfired mudbricks are susceptible to water damage.  Water can dissolve the bricks as well as weaken them, especially near the base of the walls. Several strategies are used to help minimize water damage. Typically, the construction techniques in the Ancient Near East involved building a stone foundation of 2-3 courses of stone upon which mudbricks were then placed to the desired height. The stone foundation does two things:  it minimizes the capillary action of water and salts seeping into the lower courses of bricks; it also helps reduce the erosive effect of water splashing from the roof back onto the bricks or from water running in the street.  Another aspect of mudbrick preservation was regular plastering and re-plastering the walls, which helped retard the effects of moisture and erosion, as well as the intrusion of plants, insects, and animals. 

How do these natural building methods defeat mold?

Mud-brick, which is also called adobe in areas of Spanish influence, can still be an economical way to build. Many people think that mud-brick invites mold and dampness into your home, however, it actually inhibits mold in several ways.  Ideal conditions for mold or rot are caused when a building material absorbs moisture and is unable to later release it, or when moisture is not absorbed but condensates on a surface. Here are the ways mud-brick and other earth building techniques inhibit mold, according to Earth Building School:

  • Creating thermal mass:  Thermal mass regulates temperature by absorbing heat when it is available, storing it and slowly releasing it when ambient temperatures drop.  Keeping temperatures higher and more constant reduces condensation and dampness, because cold air holds less moisture and so will condensate on windows and walls.Earth is one of the best thermal mass materials available, because of its slow reaction time and because it naturally regulates humidity.  It is easy to retrofit earthen building elements to your existing home: Earthen plaster over drywall, inbuilt cob furniture or mudbrick feature walls - let your imagination run free while creating a beautiful, healthy living space.
  • Clay regulates humidity: You can't beat clay when it comes to balancing indoor humidity at optimum levels of 40-60% RH. A solid wall of earth bricks can absorb up to thirty times the moisture of conventional burnt bricks and a 30mm (1-3/16”) thick surface coating of clay is more than enough for daily buffering.  
  • Naturally anti-fungal: Finally, natural finishes such as clay, lime plasters or Tadelakt (Moroccan plaster) are naturally anti-fungal.  These are good finishes in areas that are often damp, such as kitchens and bathrooms.  Lime is highly alkaline (high pH) and inhibits mold growth. It can be used to fix mold problems in old buildings (once permanent water damage has been remedied) and is a good and very hygienic choice for bathrooms - even in splash areas such as hand basins and showers.  Lime plaster is water resistant and can be applied as Tadelakt, for a totally waterproof result.  Working with lime - especially in situations where waterproofing is required - is a bit more technical, so it is advisable to get a skilled person onto the job. 

Whether the building is constructed with mud-brick or stone, these are the “bones” of the walls; plaster is placed over the brick or stone, and then the final interior and exterior finishes give them the protective “skin” that really preserve the construction from the elements.  Let’s dive into the finishes of Limewash and Tadelakt to find out why they are so good at inhibiting mold.

Limewash:  This ancient paint has so many physical benefits, and topping it off, has a soft and warming aesthetic that is causing a resurgence in its popularity.  Chemically, limewash is calcium hydroxide mixed with water.  Calcium hydroxide, also known as quicklime, is a naturally-occurring mineral that is soft and easy to mine from the ground (nature also “excavates” lime deposits with water, producing caves with fantastic formations inside).   Adding just the right amount of water causes the mixture to heat up (an exothermic reaction) that can be used immediately or left to cool down and thinned out with more water.  Here are some benefits of applying limewash in your interior or exterior finishes:

  • Limewash applied to stone and wood prevents rot and erosion while allowing the structure to “breathe” and release moisture.
  • Limewash is a natural pest repellent: the active ingredient, calcium hydroxide, discourages many types of worms, beetles and even mosquitoes from infesting the structure.
  • Lime is a farmer’s friend because it naturally deodorizes.  Lime provides free calcium ions, which react and form complexes with odorous sulfur species such as hydrogen sulfide and organic mercaptans found in animal and biological waste.  Thus, waste odors are not “covered over” with lime, but actually destroyed.  (Uses of Lime/Environmental/Animal Waste)
  • The high pH of limewash (10-13) makes it anti-fungal, anti-viral and anti-bacterial when it’s wet.  When dry, the pH lowers to neutral; however certain commercial limewashes like Lime Prime by Earthpaint have proprietary resins/polymers that allow the active ingredients to rehydrate and raise the pH again, so that it continually fights mold.
  • Limewash (and the plaster beneath it) are naturally incombustible.  This property was recognized at least as far back as 1212, when the King of England decreed that buildings that survived the terrible London fire must be plastered and limewashed immediately to prevent future fires.
  • Limewash prevents rust on iron surfaces.  This makes it even easier to apply, as masking off hardware is not necessary unless for aesthetic purposes.
  • Limewash is cheap and easy to make on your own.  You’ll just need to purchase calcium oxide (also called burnt lime or quicklime) from a supplier, and be sure to wear the proper clothing and protective gear to guard against chemical burns.  There is plenty of tutorials online, and this article from a long-established UK building conservation company also describes the process.
  • Finally, if you prefer skip the DIY and use commercially prepared limewash, Earthpaint, a company that prides itself in only offering non-toxic paints and wood finishes, has a set of products that can specifically tackle damp areas and mold remediation areas: Lime Prime and Lime Seal.  These are also great on unprimed drywall in any location.

Tadelakt: Sometimes referred to as Moroccan plaster, tadelakt is a traditional plaster indigenous to the Marrakesh region of Morocco that can be used as a stylish wall covering and alternative to tiles. It can be used indoors and on exterior walls.  Tadelakt-plastered walls create a solid, waterproof surface that is seamless, has no grout lines and is resistant to mold, which are some of the reasons why this traditional plaster style has become so popular in contemporary, minimalist homes. (Tadelakt: What you Need to Know About Moroccan Plaster)

Tadelakt is applied in several coats and finished using a special technique. "The final stage of polishing is done by using a plastic trowel, Japanese trowel or a traditional Moroccan application which requires a special polishing stone," explains Ian Kozlowski, Founder of Decor Tadelakt.  It's the final stage of applying tadelakt that makes the resulting surface waterproof.  Valentin Tatanov, manager at Tadelakt London explains: "The olive oil soap that is rubbed into the surface of the product chemically reacts with the lime to form calcium stearate."

This waterproof membrane makes Tadelakt appropriate for use in shower enclosures and wet room ideas (where shower walls are not necessary and the entire room can be wetted and drained).  The seamless application means that details like benches, windowsills and shower niches are easy to create.

Tadelakt is relatively low maintenance;  it can be cleaned simply by rinsing with water because the surface resists dirt and mold. "In the shower, squeegeeing down the walls after each shower is all that is needed to maintain the tadelakt shower walls," explains Decor Tadelakt's Ian Kozlowski.  What's even better from a non-toxic standpoint, you must avoid using commercial bathroom cleaners on tadelakt, especially any containing bleach or harsh solvents, as this may destroy its waterproof quality. 

Just like a wooden countertop or cutting board needs periodic maintenance to keep it looking great, water-resistant and bacteria free, "regular recoating with soap solution ensures that the tadelakt stays in excellent condition for years to come," suggests Valentin. 

Shikkui Plaster:  The Japanese started using this type of thick plaster in the 6th century following the spread of Buddhism from the Korean peninsula.  It is made of slaked lime additives including seaweed extracts, soybean oil, natural plant fibers, and eggshells.  It is also used on interior and exterior surfaces.  According to this article, some versions of the plaster also contain plankton skeletons and special algae only found in Japan, which is hygroscopic and helps control humidity. Due to these ingredients and the plaster’s natural ability to absorb pollutants and VOC gasses, it creates healthy airflow within spaces. It is fire and earthquake resistant, has the ability to naturally control bacteria, fungi, and molds; and is naturally anti-static, which reduces dust accumulation.   This Shikkui plaster manufacturer shows the tools and techniques for applying this plaster to practically any wall surface (even wallpaper!).  It is applied quickly in two thin coats back to back, and has a highly polished finish.

For all of their benefits and non-toxicity, we shouldn't be afraid to experiment with limewash, tadelakt and even Shikkui plaster in our homes as the "new" anti-microbial coatings.  They've stood the test of time!

Photo by Anne Nygård on Unsplash

Lime: an ancient wonder-mineral

Lime: an ancient wonder-mineral

If you read our article on Ancient Homebuilding 101, your interest might be piqued about lime and its use as an anti-fungal coating inside and outside homes.  We gave a number of benefits of limewash that are still used on some farms and buildings today; if you see white walls inside a dairy barn, for example, it’s most likely limewash.  But how does limewash work to kill germs?  The answer lies in its chemical makeup before it’s completely dry, and repeating the application. 

Mold does not grow on limewash when it’s fresh.  Here is advice from Timothy Sly, a Food-borne disease epidemiologist.  To make lime-wash, quick-lime (calcium oxide, CaO) is ‘slaked’ with water to produce calcium hydroxide, Ca(OH)2. A slurry of this is applied to the wall, stone, plaster, etc. It begins as a strong alkali (base), but after a while, atmospheric acids (e.g. carbonic acid, H2CO3) react with the slaked lime to produce a neutral carbonate (CaCO3). At this stage, though still white, the surface can support molds and mildews that use pollen , soil, and other dust as a substrate. The solution is to apply more lime wash at LEAST once a year, often twice.

When lime-wash was applied frequently and regularly to house-roofs in the tropics which were - and still are - used as rainwater catchments, the water collected was partially protected with the bactericidal effect of freshly-slaked lime. But as modern options appeared, house-holders chose to use white latex paint on their roofs, which now required re-painting much less often. The problem was that all the bactericidal effect was now absent, and the water in the collection cistern was of a poorer bacterial quality, grew more algae, and had more mosquito larvae present. Another example of ‘improving’ A only to cause more problems with B. 

Lime render and mortar physically degrade because of chemical removal of the calcium ions by dissolved atmospheric acidic gases and by chemical substitution with sulphates and chlorides. As erosion occurs, spaces form in the lime providing damp niches for chemotrophs (organisms like mushrooms or bacteria which manufacture their food from inorganic substances in the presence of energy derived from inorganic compounds) which produce toxic compounds of ammonia and nitrite salts and as they die, form a nutrient base for other organisms.  (Novel Biodesign enhancements to at-risk traditional building materials

Here is a rendering of the “Lime Cycle” (from LimeWorks.us)

This diagram shows that it’s really a layer of “limestone” or CaCO3, that is formed when you limewash and allow it to dry (top of diagram). 

Let’s take that cycle one step at a time. The following is adapted from Calcium carbonate and the Lime Cycle.  Calcium carbonate is a very common mineral in the Earth's crust. It is the main building block of most animal shells, including the shells of shellfish, snails and birds’ eggs.  There are four main types of rock containing calcium carbonate: limestone, marble, chalk and calcite.

If we heat limestone to a very high temperature (to about 900 degC or 1652 degF), it decomposes - this is an example of thermal decomposition.

Calcium oxide is known as lime, or sometimes quicklime. If we heat a lump of quicklime very strongly it gives out a very bright white light. This is known as limelight. Limelight was used for stage lighting before the introduction of electricity, so famous actors and actresses were said to be in the limelight.

Quicklime reacts very violently with water giving out a lot of heat.

This reaction is called slaking. Calcium hydroxide is also known as lime, or sometimes slaked lime.

Lime mortar hardens as it dries. In addition a chemical reaction takes place between the lime and the carbon dioxide in the air.

This reaction takes place quite quickly at the surface but more slowly in the interior: not all of the lime in the lime mortar used to build the Great Pyramid has yet turned into calcium carbonate - after more than four thousand years!   The carbonation process absorbing atmospheric CO2 occurs at about 5 mm per month from the outer skin working inwards.  (Novel Biodesign enhancements to at-risk traditional building materials)

As you can see, processing limestone is a very energy-intensive process, but when compared to manufacturing Portland Cement, it’s actually more energy efficient.  Although it doesn’t actually sequester carbon (because CO2 is released during the burning process and it’s reabsorbed during the curing process), it does produce less CO2 emissions than Portland Cement.  During manufacture lime produces 20% less carbon dioxide than cement production.  Lime is burnt at a lower temperature than cement in the production process (900°C as opposed to 1300°C), therefore making lime production more economic. (The History of Lime and its Environmental Benefits)  In addition, cement does not “reabsorb” CO2 and is brittle (cracks), while lime used in cement can somewhat “heal” cracks.  If “lime putty” is added to mortar, it makes it more breathable (permeable) than Portland Cement (check out the pore structure here).

Lime’s anti-fungal properties can also be used on living trees, to protect trees from disease, sunburn and frost injury: The National Park Service used it on their historic trees, and it’s also recommended for citrus trees by a knowledgable tree service.  

If you want to use lime inside your home to deter mold or remediate a moldy area, Earth Paint has taken a 10,000 year old technology and engineered it to be safely applied directly over high moisture content, Mold and Mildew stained surfaces.  This product uses the power of lime to penetrate and saturate the porous cell structure of wood, drywall and concrete matrix.  As such, spray coating your building with Lime Prime and Lime Seal renders  a weather and air barrier outside.  Inside, before windows and drywall are hung, spraying the frame and wall cavities with Lime Prime will inhibit mold inside the walls.  (Lime Prime - Mold Abatement / Remediation)

For more benefits of limewash, be sure to visit our article on Ancient Homebuilding 101.  Lime is everywhere…did you also know that calcium carbonate is also the primary ingredient in antacids like TUMS?   You also may be walking on it or showering in it, because travertine is really a type of limestone.  It just goes to show that limestone is not just for caves; it’s a really useful (and beautiful) material in many aspects.

Photo by Anne Nygård on Unsplash

Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners

Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners

If you haven’t read our white paper on mold, mycotoxins and mVOCs, you should!  While discussing the meanings of these scientific terms with our team, we thought it would be even more helpful to break it down to the vernacular.  Mold is like most other living organisms that excrete waste products.  Mycotoxins are not similar to excrement, in that they are not secreted because of normal growth, development or reproduction of the mold (they are secondary, not primary metabolites).  They are chemicals secreted in offense and defense, and in stressful situations.  Thus, mycotoxins are like sweat–the toxic sweat of mold (yuck!).  They can be sent aloft into the air on mold spores (which are also released whenever the mold is stressed or physically agitated), or even smaller fragments of mold and dust, which are all easily breathed in.  

Microbial Volatile Organic Compou0nds (mVOCs) are gasses as a product of growth, development or reproduction (some are primary metabolites), and as a signal to other microbes around them (secondary metabolites).  This means that mold uses mVOCs to communicate and affect the behavior of other molds around it, even as a competitive tool to directly exert antimicrobial activity (suppressing or eliminating potential enemies). (Volatile affairs in microbial interactions)  As such, mVOCs are akin to body odor–the toxic body odor of mold, which it uses to intimidate other mold!   Although they are meant to signal other microbes, even humans can recognize the smell of some mVOCs in that musty, earthy smell that is a tell-tale sign of mold.

It has been shown that the mycotoxins can be eliminated by various physical means such as thermolysis (destruction by intense heat), radiation treatment and low-temperature plasma (bipolar ionization).  They can also be destroyed by chemical methods such as oxidation (removal of electrons), reduction (addition of electrons), hydrolysis (breakdown by reaction with water), alcoholysis (breakdown by reaction with alcohol), absorption and adsorption, and biological methods by using living things like bacteria or other molds. (Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action)  Only two  of these methods are permitted to mitigate mycotoxins in foods, however, contamination of raw materials with chemicals and/or products of side reactions limit their use.

Alternatively, using enzymes to detoxify mycotoxins mostly avoids these problems.  First of all, what is an enzyme?   Enzymes are proteins produced by living organisms that act as catalysts in chemical reactions.  Enzymes can either build up or break down.  For our purposes, cleaning enzymes facilitate breaking down microbes and their byproducts that cause sickness, stinkiness or stains.  

Scientists have been exploring making artificial enzymes since the 1990’s, and many of these are mimicking enzymes found in nature.  Here are the most common types of natural enzymes (from Simple Science: How in the World do Enzymes Clean?):

  • Proteases break down protein-based soils including blood, urine, food, feces, wine and other beverages.
  • Lipases break down fat molecules like oils and grease.
  • Amylases break down starch molecules like eggs, sugars, sauces, ice cream, gravy.
  • Cellulases are used to soften fabric and restore color to fibers made up of cellulose material. They also remove particulate soil and reduce fabric graying and pilling.

Various enzymes can also be combined to treat the combinations of mycotoxins that are produced by some molds.  For example, cytochromes are enzymes that include a number of compounds consisting of an iron-containing molecule bonded to a protein (cancer.gov).  Cytochromes are usually used within mammals as detoxifying agents of multiple toxic compounds, including mycotoxins.  Cytochromes in the human liver are able to convert aflatoxin B1 (a cancer-causing mycotoxin) into Aflatoxin M1, which is 10 times weaker in carcinogenic potency.  In turn, glutathione s-transferase, another enzyme in our bodies, leads to the excretion of aflatoxins from the body (2016 study).   

Since the enzyme-based approach for degrading mycotoxins in homes is new, there aren’t that many commercial products on the market.  In fact, Green Home Solutions claimed in 2022 that it was the “is the only professional remediation company that combines the ANSI/IICRC standards for mold remediation with a state of the art proprietary disinfectant/ fungicide that not only kills bacteria and molds, but continues to work by breaking down the allergenic protein structures into harmless amino acids.”  It is only available for professional use, but their product description shows that several enzymes are combined for maximum effect on the broad range of mycotoxins that may be found in a home:

  • AMYLASE is an enzyme that digests the mold’s outer membrane or cell wall. It dissolves and causes the insides to leak out.
  • LIPASE is another enzyme in our product formula which attacks and breaks down the fatty lipids inside of and in between the mold membranes.
  • PROTEASE breaks down allergenic proteins at the mold’s core or nucleus, eliminating them from the air you are breathing.

Since we revealed the real nature of mycotoxins and mVOCs (they’re like toxic sweat and body odor), we thought you might like some real solutions you can use to get rid of these toxins in your home!   Elimination of the mold colony is first and foremost, so it’s best to contact an inspector if you can’t find or handle the problem yourself.  Getting rid of the bulk of mold will remove much of the mycotoxins and mVOCs, but mycotoxins can still be present in dust (they are very hardy and indestructible by heat), and mVOCs may be present in absorbent furnishings.  Here are some products and techniques that can rid your home of the remainder of these toxins.

  • EC3 Enzyme Cleaner Concentratie is a non-toxic solution also trusted by many mold remediation companies and mold awareness sites, such as moldfreeliving.com.  It is an enzyme solution with citrus and essential oils that is safe for food-prep surfaces, can also be used in the laundry and many surfaces around the home, even as a degreaser. It was proven effective for mold spores and mycotoxins by a 3rd-party, CAP-accredited lab.   

  • MycotoxinKlear is recommended for all mold and mycotoxin products in use of a fogger or electrostatic sprayer.  

  • The enzyme-based approach for degrading mycotoxins in homes is not common on the commercial scale.  However, some mold remediation companies use them with great results.  The Mold Pros use SurfaceGuard, which was shown in a 2019 study analyzed by RealTime Labs to break down ochratoxin, aflatoxin and gliatoxin to undetectable levels.  Unfortunately SurfaceGuard is only available to commercial remediation companies.

  • Most MVOCs can be mitigated with activated carbon filters, because they are in a gas form and can flow through and be adsorbed by the carbon molecules.  You can try our Germ Defender with carbon filters, or purchase carbon filters for your standalone HEPA unit.  Mycotoxins, however, will not be affected by carbon filters because mycotoxins are attached to spores, fragments of spores, and dust, which are not captured by carbon filters.

If you can’t remove all of the mold, the next best thing may be encapsulation.  Encapsulation is a controversial method in that it does not physically remove the mold but surrounds it with a protective layer that does not allow it to release spores or mycotoxins into the environment anymore.  If encapsulation is done properly, though, it can be a safe method that allows homeowners to save wet drywall and wood that have not dried out completely, by sealing any mold that is present and not allowing more to grow.  As demonstrated by EarthPaints, encapsulation either needs to be applied to completely dry substrates, or with a solution that allows the substrate to completely dry over time.  Their Lime Prime paint is a non flammable mineral shield that saturates wood fiber cells and pozzolanically reacts with concrete and gypsum. Encapsulated Substrates dry out properly and in 30-60 days are ready for follow up after a flood. (earthpaint.net)  The problem with mold encapsulation is that it must completely coat surfaces in a space with a durable non-toxic product, and of course the space must be clean and dehumidified, or the mold will “break through” and continue growing as dust and moisture allow it to propagate.  For more information on whether encapsulation is right for a space in your home, this article by a building biologist is very helpful.

Once again, we also find that bi-polar ionization (used in the Germ Defender, Air Angel and Whole-Home Purifier) should be effective against mycotoxins in the home.  Because bipolar ionization sends out positive and negative ions that cause small particles to clump together and fall out of the air, this reduction in particles means a reduction in mycotoxins, since mycotoxins ride on spores and fragments of mold.  More testing is needed in residential and commercial settings to confirm this, however, our case studies using bipolar ionization to reduce mold spore counts without any additional filters, are quite extraordinary!

Photo by Anne Nygård on Unsplash

Testing Your Home for mVOCs Could Point to Hidden Mold

Testing Your Home for mVOCs Could Point to Hidden Mold

In our Indoor Mold Summary White Paper, we discussed the various by-products of mold: spores, mycotoxins and mVOCs (microbial Volatile Organic Compounds).  Some of these VOCs give that characteristic musty odor, and like VOCs from other sources (like furniture or building materials that off-gas), they can be identified through air quality testing methods.  Importantly, mVOCs presence can indicate actively growing mold, and also indicate what types of mold are growing–like a “signature scent”, different molds produce unique VOCs.   Testing for mVOCs is an important part of indoor air quality, and we’ll discuss the equipment used by different mold inspection companies, as well as how the samples are tested.

Typically VOC testing is performed by professional technicians and home inspectors.  They use one of two devices to gather air samples for VOC testing.  One is Summa canisters or “mini-cans”, and the other is sorbent tubes.  Summa canisters are stainless steel spheres that are “evacuated” (the interior is placed under a vacuum) with a flow control device on top to allow the technician to control the amount of air sampled over a specific period of time.  These are used for “whole air samples”.  The other technology uses a small air sampling pump, which draws room air through a glass tube that has specialized “sorbent” in it, that is, material that adsorbs gasses in the air.  Summa canisters are only used by certified technicians, but sorbent tubes can be used by home DIYers (via the company Home Air Check) or technicians. Here are some of the pros and cons of both, according to two different sources (MVOC Fact Sheet, What are the differences between canisters and thermal desorption tubes?

Technology/Device

Pros

Cons

Summa or Silonite Canister, or Mini-can (Summa refers to the process used to apply a Nickel/Chromium oxide layer to the inside of the canister for anti-corrosion and contamination; since its development in the 1960’s, other types of coatings have been developed)

  • Useful if a broad spectrum ‘unknown’ GC/MS scan of MVOCs is desired.

  • Relative humidity in the space to be sampled should be low because moisture can cause problems with preparing the sample for ttesting (cryogenic concentration is used  before GC/MS).

  • Higher shipping and analysis costs.

  • Are only used by trained air quality technicians

  • Cleaning and certification of canisters is done by specific labs

  • “Shelf life” of unused canisters is only 30 days.

Sorbent Tubes

  • Can sample a larger volume of air (up to 40 liters)

  • Less expensive to ship and easier to store

  • “Shelf life” of sorbent tubes can be up to 2 years

  • Analysis is more accurate if a target organism is identified (what types of VOC) so that the appropriate sorbent material is used.


On the left, Summa canisters in the field, and to the right is the Home Air Check device (sizes are not equivalent).

Professional air quality and mold inspectors will use one device or the other.  If the inspection is for a government facility, often canisters will be specified under the “TO-15” (Toxic Organic  Compounds) testing requirements set forth by the EPA.  For residential testing, however, sorbent tubes are becoming more and more popular due to their portability, ease of storage, and detection capabilities, despite the claim that the sorbent needs to be targeted to the gas. To this end, a company that pioneered sorbent tube sampling, Enthalpy Analytical (formerly Prism Analytical Technologies) now offers the tubes and air pump in a DIY kit that can be returned to the lab for analysis.  Home Air Check is a patented technology similar to spore trap sampling, in that air is drawn into a specialized tube via an air pump.  The instructions are simple to operate the device and return the sample to the lab for testing.  The hardest part, however, may be preparing your home to do it:  

  • Exterior doors and windows should be closed for 24 hours before testing
  • All interior doors should be open during the test (including closets)
  • Don’t clean or dust the day before or during the test
  • Don’t cook for 12 hours before or during the test.
  • Temperature inside the home should be between 60-80 degrees
  • The HVAC should be running if it’s available, so the air is thoroughly mixed.

Testing for mVOCs to detect mold is a unique concept, because mold gives off these VOCs when it is active and growing.  If a water source dries up and the mold dries up, mVOCs are no longer produced.  In addition, the production of mVOCs is not constant throughout the life cycle of the mold(s).  However, since mVOCs are light vapors, they can even be detected through air barriers or moisture barriers that are used for home sheathing, meaning that it’s possible for  mVOCs from mold growing on the backside of siding or cladding material to be detected inside the home.

How are the samples tested for VOCs in the lab?  

VOCs are analyzed by gas chromatography/mass spectrometry, but the canisters and tubes require different preparation steps.  

How are mVOC levels interpreted?

Many VOC reports are measured in nanograms per liter (ng/l), and although it’s very small (if measuring water it is parts per trillion), the difference between for example, 3 and 20 ng/l is the difference between negligible mold growth and significant mold growth, for hypersensitive individuals (see pages 6 and 8 of a sample air survey report by Fike Analytics).  Some reports such as Home Air Check will also place your results in a curve relative to other homes/buildings (see page 3 of the sample report).  

How do mVOC levels correlate with other forms of air testing for mold?

Home Air Check is a form of active air sampling, which draws air through the tubes.  There is also passive air sampling, which allows normal air currents to pass into the sorbent material, and by at least one study was found to correlate more closely with airborne fungal concentrations (spore counts).  Passive samplers are more typically used in industrial sites, however, where the sample device is left in place for weeks or months (like on the fenceline of a chemical plant to establish exposure of the surrounding community to VOCs).    

In any case, mVOC testing can’t pinpoint where the mold is, and that’s why some inspectors don’t believe it’s worth homeowners’ money.  If mold spores were not detected in an air sample but odors or other signs point towards mold growth in a building, then mVOC sampling may be warranted. MVOCs were found to pass through poly sheeting while spores cannot. (MiraMold VOC testing) The real detective work is in a thorough examination for signs of leaks and high humidity, which mold needs in order to grow.  Is mVOC testing appropriate for you/your home?  Certain companies such as Enthalpy Analytical and Fike Analytical use mVOC, total VOC and dust sampling to give a total picture of what occupants are exposed to in the home environment.  We would say it’s an additional tool for determining if there’s a hidden problem (Are there any new mold detectors on the market?), and like the airport scent detectors, the real-time mobile version of this technology (zNose) could become as accessible and practical as walking a trained dog through your home, or using an infrared camera, to detect where that mold is hidden.  

Photo by Anne Nygård on Unsplash

Getting rid of the ICK: Mold in the Shower

Getting rid of the ICK: Mold in the Shower

Mold growth in the shower seems to me like cockroaches in a house: even luxury homes sometimes have problems with each, and sometimes it takes a number of attempts to find a non-toxic solution for them!   The shower just happens to be the ideal place for mold to grow (moisture, food, air and heat are all applied daily!), so keeping the shower from looking like a petri dish can be challenging.  Let us help you with this problem!

Since we know, wittingly or unwittingly, how to grow mold, we can look at its life source requirements and see if we can eliminate one or more to get a mold-free shower.

Moisture:  You would think that taking the “wet” out of a shower is impossible.  Of course, the shower will often be wet, but the important bit is that it’s not continually wet or wet for long periods.  There are various ways to dry it out after showering; check to see if there are any that you haven’t tried! 

  • Make the surfaces hydrophobic:  Hydro-what?  Hydrophobic is the characteristic of products like Rain-X: they repel water instead of absorbing them, so that water drops roll right off.  The active ingredient in Rain-X is Polydimethylsiloxane (PDMS), which is rated a “1” on scale of 1-10 by the Environmental Working Group (meaning it’s of very low toxicity).  In fact, here’s a tip that has worked well for me: after thoroughly cleaning your shower as well as you can (see next section), give all the surfaces, glass and otherwise, with a coat or two of Rain-X to make the water slide right off.

  • Squeegee: This tool, normally in the hands of a window-washer, is also useful for removing water from flat surfaces in the shower.  It can work somewhat on tile if the tiles are large and flat, but it works on glass even better.

  • Drain: Obviously, the water has to have somewhere to go.  If your drain is not working well, you can enlist the help of a plumber.  While the plumber is involved, inquire whether the venting of the drain is adequate (if a vent is too distant or non-existent, the drain does not work well and can cause mold build-up).  If the slope of the shower pan leaves puddles in the floor, it might be prudent to think about replacing or remodeling the shower, because continually wet floors are not only unsanitary, they’re unsafe!

Food: Molds can dine on just about anything, and dead skin cells and even bodywash and hair shampoo are on the menu.  That’s why regular cleaning can break the mold chain even if the other “links” like moisture, air and heat are present.  Find a non-abrasive sponge or brush to avoid damage, and go to town with a non-toxic cleaner:

  • TotalClean is our odorless powerhouse cleaner that can be used on any surface

  • Earth Clean is especially good as a degreaser if you have buildup of waxy products (citrus scent)

  • Force of Nature is a method of making electrolyzed water, which is a completely safe and natural disinfectant that can be used for hand sanitizing and cleaning all areas in your home that can tolerate water!  They have a line of reusable bottles and travel-size sprays that are great for the environment.

  • Vinegar-based cleaners also work, however make sure that they are safe for your shower surface first (for example, they should never be used on travertine or marble, both of which are a type of limestone that can be damaged by acids). 

Air: Of course, you can’t eliminate air from your bathroom, and some molds are even anaerobic anyway (meaning they can survive on little to no air!).  What’s best is if you can change out the air as much as possible, sweeping away excess humidity and mold spores with it.  This is what a good bathroom exhaust fan is for: get the air moving!  Professional restoration companies do the same when they bring in big blowers: air movement speeds up the drying process because it promotes evaporation of water from all the surfaces.  Check out our article on how to check if the size and venting arrangement of your bathroom exhaust fan is optimal.  Getting members of your household to use it is another feat, however this can be automatic if you have an electrician wire the switches together so that the vent always comes on with the light.  Also, here’s another way to “condition” the air in your bathroom to avoid mold:  use a Germ Defender 24/7.   The ions created by the Germ Defender not only destroy mold and its spores in the air and on surfaces, it also sanitizes surfaces after they’ve been contaminated by the dreaded toilet plume.  

Heat:  Anyone who’s cleaned out a refrigerator knows that heat is not a pre-requisite for mold to grow!   However, it certainly makes a more hospitable environment for many molds to flourish.  Using your bathroom exhaust vent after showering  certainly helps reduce moist heat in the air.  

There are also many products worth mentioning that can keep your shower cleaner for longer.  

  • That pink slime that forms around your drains and shower corners can also populate the shower head, and it’s not good!  It’s actually caused by the bacteria Serratia marcescens, and can cause urinary and respiratory tract infections, which are especially problematic for people with immune problems. (Not So Pretty in Pink: What Is That Pink Slime in My Bathroom?)  There are other types of harmful bacteria in there as well, such as NTM (nontuberculosis mycobacteria).  Soaking your showerhead to clean it does not fully resolve the problem, because it does not dry out. If you can’t seem to get rid of it from the shower spray head, swap it out with one of these:

    • Shower Clear Shower Heads ($299-319) are made of brass (a naturally anti-microbial material) and are made to open fully to dry out between uses. 

    • This showerhead by Niagara ($28) features a removable faceplate that will also allow the showerhead to dry between uses.

    • AquaDance Antimicrobial has antimicrobial rubber tips that also prevent minerals from clogging the spray jets.  (It uses the material Microban, which does contain quaternary ammonium compounds or “quats”, however).  

  • Thankfully, there are several good changes happening in the shower curtain market.  For one, PVC shower curtains are being phased out and replaced with PEVA or EVA.  Polyvinyl chloride, or PVC for short, is that plastic with the strong smell that emits toxic VOCs which can disrupt hormones, liver and kidneys, and your nervous system.  EVA (ethylene vinyl acetate) is a safer alternative to PVC, but some EVA contains formamide.  Formamide is used to make the foam soft, but it’s considered to be carcinogenic and a developmental toxin that can be absorbed through the skin. If you’re considering purchasing one of these doors made from EVA, it’s best to contact the manufacturer to ask if their product contains formamide. (hellonaturalliving.com)  

    • Sustainable Jungle also gives many organic and sustainable options to plastic shower curtains!  

    • Check out how I used TotalClean, our non-toxic all purpose cleaner, to clean the pink stains off the hem of my shower curtain.

  • And finally, what about your washcloth?  Experts say it’s a good idea to use a new one everyday, or at least several times a week.  Since it’s usually hanging in the moist shower, washcloths and scrubbies take a long time to dry, allowing microbes to grow and establish in the fibers.   

Since bathrooms are among everyone’s least favorite rooms to clean, and showers and toilets certainly also near the bottom, I’m liking the concept of wetrooms more and more.  Wetrooms are waterproofed bathrooms (at least all of the floor and some distance up the walls) that can be wetted and cleaned all in one go.  If you can’t do that, at least make your cleaning tools easy to use and accessible:

  • This Turbo Handheld Sprayer by Clorox ($50) eliminates the tiring pump, pump, pump of handsprayers.  Used with non-toxic cleaners like we suggested above, this could be a game-changer!  We don’t recommend the Clorox Turbo (or Turbo Pro) however, because it uses alkyl dimethyl benzyl ammonium chlorides, which can have asthma, respiratory, reproductive and developmental effects according to the Environmental Working Group.

  • E-Cloths Shower Cleaning Kit ($15) requires only water to have a sparkling shower.  Once you’ve cleaned it, use these two cloths on a regular basis (with no chemicals) to keep it clean.

  • The shower squeegee is a good way to remove water from the glass surfaces, but what about all the corners, curves and floor area?  If you thought about this before designing your bathroom, you might install an Airmada Air-Jet Shower Drying System.  It directs compressed air through special nozzles on the walls and ceiling of your shower, and can operate on a timer so that without your effort, water is removed from the equation and mold doesn’t have a chance to grow.  Another perk is that everyone can walk into a dry bathroom, no matter how many people have showered before you.  Now that is a great use of technology!

Photo by Curology on Unsplash

You don’t have to tell me (I can see/feel the humidity!)

You don’t have to tell me (I can see/feel the humidity!)

Although we like to measure to be sure and humidity sensors are easy, cheap ways to verify, there are signs all around us when the humidity is too high.   

Here are a few examples with the explanation why: 

  • That musty smell, of course:  Unfortunately, that smell is the telltale sign of mold, and is actually the microbial Volatile Organic Compounds (mVOCs) that molds produce.  To find out more about mVOCs, check out our detailed article

  • Doors and wooden windows that “stick” in their frames: Wood absorbs water from the air, causing it to swell, so closely-fitted wooden furniture like doors, window frames and even cabinets and drawers can “stick”.  When the interior and exterior “weather” dries out, they can work just fine again!

  • Condensation on the inside of windows:  To understand why condensation happens, it’s best to start at the concept of dew points.  You can read more about it in our article here, but the basic concept is that every temperature and pressure of air can hold a certain amount of water vapor.  Warmer air holds more water vapor than colder air.  When warm air hits a cold surface, the water vapor will condense or “drop out” of the air onto the surface–just like a glass of iced tea sweats on a warm day.  The occurrence of windows sweating on the inside will happen when warm, humid air hits a cold window frame (this happens most often with aluminum windows), and if it persists, can be a habitat for mold.

  • Salt or seasonings that clump and stick together:  This may not happen as much nowadays with the proliferation of “preservatives” used in our foods.  However back in 1911 (before air conditioning was widespread), table salt tended to cake in the container when it was rainy or muggy, because salt is hygroscopic.  This means that it has a tendency to absorb moisture, even from the air, and clump together.   Morton started to advertise using the slogan “When it rains, it pours” because they added magnesium carbonate (an anti-caking agent) to their salt, which allowed it to pour freely even in humid weather. (Today, the company uses calcium silicate.) (What’s The Weather Lore Behind The Morton Salt Slogan?)  Here’s a tip: if you are having a bit of a humid spell in your home, or even going camping, you can add a pinch of rice to the salt shaker to get it flowing.  Just like immersing a wet cell phone in a bag of rice, the rice will absorb the moisture out of the salt and allow it to flow through the holes of the shaker again.

  • Household electronics having issues--especially battery ones:  Electronics and water rarely go together, and they can get finicky when the humidity starts to creep up. Battery-operated appliances have contacts that can easily corrode.  If that happens, of course try to dry out the air, and you can use fine sandpaper on the contacts to remove corrosion.

  • Proliferation of insects and pests: Pests like fleas, ants and cockroaches love high humidity: it’s the perfect environment for them to lay eggs and develop into adults. Warm temperatures combined with high humidity is ideal for fleas, and they can rapidly multiply in these conditions. (Do Fleas Thrive in the Rain?)

  • Mildew on wooden furniture: If you have wooden furniture on a humid porch, you may have already figured out that it needs regular wipedowns and maintenance to keep it from growing “fur”!  The same thing can happen inside when it becomes too humid, because the surface of wood is very hospitable to catching dust that can feed mold.  

If you notice any of these signs, it’s time to take action before mold sets in!  The first thing we can recommend is air circulation and ventilation (outside weather permitting), which can change the indoor climate from room to room.  Air conditioners are not automatically “dehumidifiers”, so if your air conditioner does not have a dehumidification mode, you may need to add a standalone dehumidifier.  Sealing the boundaries of the home is really important to prevent intrusion of exterior humidity.  Finally, our Germ Defender, Upgraded Air Angel Mobile and Whole Home Polar Ionizer can help by sending out millions of ions to kill mold spores in the air and on surfaces. The takeaway is that after a while, you can learn to read the signs of high humidity without even glancing at an air quality monitor, and make adjustments accordingly!

“Sink” those microbes

“Sink” those microbes

According to a University of Reading study, sinks have the perfect recipe for a fungal environment and they host very similar organisms.  Researchers tested more than 250 restroom sinks for fungi, such as black molds and relatives of baker's yeast.  These fungal biomes usually don’t pose a problem for healthy individuals, but for those with compromised immune systems, sinks could be an overlooked reservoir of illness.  

One might think that with all the detergent and handsoap going down the drain, it would be squeaky clean, but for anyone who’s had to clean the drain or take it apart to unclog it or save a piece of jewelry, it’s anything but!  The types of fungi that live in sinks can tolerate high temperatures, low pH (acidic), and low nutrients. Some even use detergents, found in soap, as a source of carbon-rich food.  It’s a place with constant moisture and food sources, so…voila!  Mold galore.

If you’re concerned about the condition of your sink drain for yourself or anyone else living in your home, there are some simple ways to keep the drain clean on a regular basis without using toxic chemicals.  To be clear, the study was conducted on restroom sinks, but the principles are the same for every sink: eliminate food for mold and flush it with natural cleansers periodically.

  • Using a mesh drain strainer on your sinks prevents solids like hair from clogging it, because hair in  sink drains is just another surface for mold to grow on.   Sink Shroom is a sink stopper/filter that you can pull out, wipe it clean and replace to keep the hair out; tub and shower models are also available.

  • Plumbers agree: Never pour grease down the drain!  From cooking oil in the kitchen to any kind of body or hair moisturizing oil in the bathroom, it just doesn’t belong in the drain. 

  • Thoroughly rinse the drain with hot water when you send anything other than water down it.  Toothpaste?  Add hot water.  Extra dirty hands?  Add hot water.  You get the idea!

  • Our top choice to keep mold at bay in the sink is simply spritzing it regularly with TotalClean– our non-toxic, odorless cleaner. Its two active ingredients, iodine and copper, are elements recognized from ancient times to freshen and sanitize water and surfaces.

  • Better Homes and Gardens have also compiled a list of natural cleansers and tools for every type of sink: stainless steel, porcelain sinks and white sinks are all covered. 

As with all other areas in the home, regular cleaning and maintenance of sink drains can go a long way!  If you still find mold growing around the drain or foul odors coming from it, then it could be a hardware problem instead.  All sink, tub and shower drains are required to be plumbed with a “vent”.  Vents allow sewer gasses to rise and escape through the roof of the home.  According to the uniform plumbing code, vents must be located within six feet of the P-trap (that snake-like part under the sink); otherwise, the drain may not work properly and gasses can build up, supporting mold and microbe growth.  If this seems to be the case, it’s best to have a good plumber check out the location and condition of the sink vents and see if there are other drain problems.  

Photo by Bibi Pace on Unsplash

All about Alkaline Water

All about Alkaline Water

Although I thought that alkaline water became a fad in the early 2010’s when it became readily available in the bottled water market, in fact it was almost 80 years earlier that scientists began to research the effects of alkaline and “ionized” water on the body.  To begin, let’s talk about what alkaline water is.

Water is super-important to our bodies and health, of course.  There are many properties of water, and pH ("potential of hydrogen" or "power of hydrogen") is one of them.  pH describes the acidity or basicity by measuring concentrations of the hydrogen ion, H+.  Chemically, water is made up of hydrogen and oxygen atoms sticking together in its famous “H2O” formula.  More free hydrogen ions in water (which are the proton of the hydrogen atom when it is stripped of its electron, denoted H+), cause water to be more acidic.  Water that has more free hydroxyl ions (OH-, read more about hydroxyl ions in the air here)  is basic.  Electronic pH meters measure the potential (electric charge) between 2 electrodes immersed in water or other liquids, to assess the hydrogen ion activity in the solution. (Britannica.com)

The pH scale ranges from 0 (very acidic) to 14 (very basic) and the number 7–in the middle of the scale–is neutral, meaning it is neither acidic nor basic.  This seems simple, but this is not a linear scale–it’s logarithmic.  Each number represents a 10-fold change in the acidity/basicity of the water. Water with a pH of five is ten times more acidic than water having a pH of six.  The EPA recommends a pH of 7 to 8.5 for drinking water, and for reference black coffee has a pH of about 5 and typically handsoap falls between 8 and 10 (the soap shown below is likely soap used in automatic dishwashers).  Our blood is about 7.35 pH.   

Source: siamhillscoffee.com

Now that we understand a little more about pH, I can add a layer of complexity: alkalinity and pH are not the same.

The above chart shows relative pH, the concentration of acid protons [H+]. On the other hand, the alkalinity of a solution is its ability to neutralize acids. Alkalinity consists of ions that incorporate acid protons into their molecules so that they are not available as a free acid that can lower the pH. This is known as buffering.  (What is the relationship between pH and alkalinity?)  “Natural” or “mineral” waters contain higher concentrations of carbonate (CO32-) and bicarbonate (HCO3–) ions, which are the buffers, than purified waters. Thus they have greater alkalinity or potential to neutralize acids. 

Alkaline water is a very controversial topic because for some years, proponents stated that it changes the pH of your blood (to create an environment inhospitable to cancer and other diseases).  This theory is not true.  Our bodies tightly regulate the pH of our blood, and if it changed significantly, it would be a life-threatening condition, such as diabetic ketoacidosis.  Acidosis refers to having blood that’s too acidic, or a blood pH of less than 7.35, while alkalosis refers to having blood that’s too basic, or a blood pH of higher than 7.45. (Healthline.com).  Alkaline water does not change the pH of the blood, however, only the urine.  This is because the acids in the stomach counteract the alkalinity in the water, before it is absorbed by the body. (henryford.com)

Although research is ongoing, the more plausible cause of health benefits from drinking alkaline water is its acid-neutralizing and antioxidant potential.  There are several ways to make tap water more alkaline: electrolysis, light irradiation, ultra-sonication, treatment with a magnetic field, bubbling with gasses, collision, strong water flow, and treatment with specific minerals or rocks (2012 article).  Of these, electrolysis (ionization) and mineral treatments are probably the most popular.

Regarding mineral treatments, increasing water alkalinity can be as simple as adding a small amount of  baking soda, but this method is not particularly tasty to everyone and adds sodium as well, which can be detrimental for those on low-sodium diets.  Chemical water treatment systems add alkaline minerals such as calcium, magnesium and potassium through concentrated drops, powder supplements or water filters.   Ionization, however, is where scientists and commercial businesses have been busy testing and innovating for the better part of the last century. 

Alkaline water research began in Japan in the 1930’s.   Japan has been a major adopter of alkaline water for health benefits, where alkaline electrolyzed water (AEW) apparatus have been approved as a medical device.  The Japanese Health Ministry recognizes that alkaline electrolyzed water (AEW) improves gastrointestinal health. It neutralizes gastric acid, improves intestinal bacterial flora and improves other gastrointestinal conditions.  (Japanese Study of Daily Ingestion of Alkaline Electrolyzed Water). 

According to an ionizer manufacturer, water ionizers work by using electromagnetism to change ordinary tap water into ionized water.  Ionizers actually need calcium and magnesium in water to work. They work best with hard water as long as the water isn’t too hard. If it is, then the hardness will need to be reduced. Water ionizers are actually more prone to hard water deposits because an ionizer changes the mineral carbonates in tap water into mineral hydroxides. (Will a water ionizer work with my water?).  Plain water, besides the H2O,  is a mix of alkaline minerals and carbonate (dissolved CO2). A water ionizer separates the carbonate from the alkaline minerals. The alkaline minerals and the acidic carbonate are discharged in  separate streams of water. (How water ionizers work)  

To put it another way, a water ionizer puts a negative electrical charge into the water it makes. As a result, that negative electrical charge gives the water antioxidant potential which can be measured, just like the charge of a battery. The negative charge is called its Oxidation Reduction Potential (ORP). (What is the difference between alkaline water and ionized water?)  

Now that you theoretically know how to make alkaline water, you might want to investigate some of the latest studies on benefits of drinking it:

A 2020 clinical trial found that alkaline water consumption (pH of 9) for 10 months in mice had an anti-aging effect by increasing telomere length (which regulates cellular aging) and significantly reducing reactive oxygen species in blood. (Alkaline Water Benefits: Three Surprising Research Findings)

A clinical trial published in the Biology of Sport journal found that athletes who consumed alkaline water had “favourable changes” to hydration status compared with athletes who drank tap water. The group drinking alkaline water also had much more efficient lactate utilization, which suggests that alkaline water use during exercise may potentially improve endurance. (Alkaline Water Benefits: Three Surprising Research Findings)

A 2021 study on high-mineral alkaline water found that its consumption improved anaerobic exercise performance, supporting the potential performance benefits shown in the previously-linked study. (Alkaline Water Benefits: Three Surprising Research Findings)

A 2022 study found that postmenopausal women who drank alkaline water had significantly lower metabolite risks (fasting plasma glucose, TG/HDL, diastolic blood pressure, waist circumference), longer sleep duration and stronger handgrip strength.  However, there was no significant difference on LDL, systolic blood pressure and body weight with alkaline water drinking.

Despite these and other studies, many scientists and health experts are not convinced that drinking alkaline water has benefits.  They don’t think it’s unsafe to drink, however, so you’re free to do your own experiments and research.  Let us know about your experience with consuming alkaline water!

Photo by Johnny Z on Unsplash

How Vestibules and Foyers make your home healthier

How Vestibules and Foyers make your home healthier

In the US, not many people would say they have a “vestibule” in their home.  Vestibule is defined as an empty space or small area located just inside the entrance to a building. This sectioned-off area has the main purpose of serving as a passage from the entryway to another, usually larger, interior area of a house or building. Vestibules are used as welcoming areas, reception areas, and wait spaces. Often, people may be able to hang their coat and take off their shoes in this space. (study.com) Oh!  You may say, that’s a  foyer.  And, although there are some small differences between the two, they share much of the same functions. 

Besides serving as a transition space from the indoors to the outdoors, architects also know that the vestibule serves two other functions: to block the view of the main interior from outside and create privacy, and to control the exchange of heat between outside and the interior of a building.   In terms of air quality, now we’re getting somewhere.  It’s very useful for the comfort and cleanliness of your home to have a foyer (vestibule) for the ability to:

  1. Stop dust and mold from coming into your home by having a place to take off your outside shoes and coat (see our article on how to bring less contaminants into your home)

  2. Stop heat or cool air from flowing right on out of the house, and preventing the same from coming in (plus unwanted humidity)!

The best designs incorporate 2 sets of doors, one on the exterior and one on the interior, with enough space between them for one set to be closed.  Meaning–you can walk into the foyer, close the door, take off your shoes and coat comfortably, and proceed into the house through the interior doors.  This truly makes the foyer a “buffer zone” for your clean, climatized home.  (In businesses, guess what they invented to take up less space?  Revolving doors!  Because each section of the revolving door can be closed off while you rotate it, they really function as mini-foyers).  Mudrooms are also a type of vestibule, and their name says it all– a place to leave the mud before entering the house!  (hunker.com)  

Now that you see the purposes of the foyer or vestibule, it’s less likely that you’ll think of them as “wasted space”.  Your foyer can be elegant and grand, or simple and cozy, because it’s a “first impression” for your home.  What if you don’t have a foyer, but now you want one?  Well, of course it’s possible to renovate and put in doors, lighting, etc., but you can also “carve” out this space by using furniture and decor to give it some of the same style and function without actually having a separate room.  Simply searching for “how to create a foyer when you don't have one” brings up a ton of good ideas, some of the best of which are: (from architecturaldigest.com)

  1. Add hanging hooks and a bench, for guest coats and removing shoes. 

  2. Bring in extra storage, like a classic armoire, if you would rather not look at a pile of coats and shoes!

  3. For style, add a rug, a statement light fixture, and a small console table (the better to hide away your mail!).  Also consider adding a mirror and wall decor.  

  4. Add germ protection: Germ Defenders and Air Angels are small, discreet sanitizers that can destroy pathogens brought in from outside before they enter the rest of your home.  Plug one in and basically forget about it--just enjoy the clean air!

  5. If your front door just opens into your living space with no entryway at all, you could add a pretty folding screen to create some separation. (clutter.com)  Better yet, make a wall of plants that will not only enjoy the light coming in if you have a window or glass door, they will also filter air pollution and particulates coming in from outside!

Source: Amazon.com

You can also turn your open-ended foyer into a semi-closed one without installing doors.  You could opt for installing some beautiful insulated drapes on the open end for climate control, which can be tied back when you have a large influx of guests or furniture coming through.  Plus–they look very elegant!  Another option that is becoming super-popular are magnetically-closing fabric or plastic doors.  Because they are easy to pass through and self-closing, they can be great for kids, those with disabilities, or to section off your foyer or mud-room.  Clear plastic doors are nice because they don’t block the view, but beware of those made with EVA (ethylene vinyl acetate).  EVA is a safer alternative to PVC, but some EVA contains formamide.  Formamide is used to make the foam soft, but it’s considered to be carcinogenic and a developmental toxin that can be absorbed through the skin. If you’re considering purchasing one of these doors made from EVA, it’s best to contact the manufacturer to ask if their product contains formamide. (hellonaturalliving.com)

“Air curtains” or “Air doors” used to be features only found in restaurants or businesses like grocery stores.  You know–it’s that blast of air that greets you from above when you open the door!  Now, they are available for homes in a 36” width, so even a modest home can use this energy-saving feature (it becomes more important as the temperature difference between inside and outside increases).  Here is a diagram of how this device helps you keep your building envelope more intact while including doors. 

(Source: learnmetrics.com)

According to Berner, a longtime manufacturer of air curtains, air from the room is accelerated by the unit’s fans, then directed through a plenum for even distribution along the full length of the nozzle.  Airfoil shaped vanes in the nozzle reduce turbulence so you get a smooth flow of air.  In addition to conserving your indoor environment, air curtains also reduce flies, mosquitos, yellowjackets, and bees inside because these small insects find the air stream too powerful for them to fly through and if they try, they are blown down or sideways before they can enter the building.  Because of their design, the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1-2019 and the International Energy Conservation Code (IECC) building code allows AMCA certified air curtains as alternatives to vestibules in commercial spaces that are required to have vestibules.  The most important specs to check before purchasing an air curtain are airflow, noise level, power, and available width.  Read this article to learn about the top air curtains for the home.  

For more inspiration, this gallery of 50 stunning entryways will make you want to bring back the “grandeur” to your entrance, and may help you figure out how to do it with pieces of furniture and decor that you already have!  

Photo by Eddy Billard on Unsplash

1 9 10 11 12 13 28