Tag Archives for " enzymes "

More Enzymatic Cleaners to the Rescue!

More Enzymatic Cleaners to the Rescue!

If you read our article “Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners”, we described that certain enzymes can be used to break down mycotoxins, the toxic products of mold, which can otherwise be very hard to eliminate.  Enzymatic cleaners specifically targeting mold and mycotoxins are few, but we wanted to let you know that all-purpose enzymatic cleaners work on stains, odors, and general cleaning duties all around the house!

First of all: What is an enzyme?   Enzymes are proteins produced by living organisms that act as catalysts in chemical reactions.  Enzymes can either build up or break down.  For our purposes, cleaning enzymes facilitate breaking down microbes and their byproducts that cause sickness, stinkiness or stains.  

Scientists have been exploring making artificial enzymes since the 1990’s, and many of these are mimicking enzymes found in nature.  Here are the most common types of natural enzymes (from Simple Science: How in the World do Enzymes Clean?):

  • Proteases break down protein-based soils including blood, urine, food, feces, wine and other beverages.

  • Lipases break down fat molecules like oils and grease.

  • Amylases break down starch molecules like eggs, sugars, sauces, ice cream, gravy.

  • Cellulases are used to soften fabric and restore color to fibers made up of cellulose material. They also remove particulate soil and reduce fabric graying and pilling.

Enzymes were initially produced by extraction from glands of various animals; however, modern enzyme production is done through fermentation of various fungi and bacteria through the steps of fermentation, recovery, and standardization.   (about Cleaning Products: Enzyme Science

Enzymes and purely enzymatic cleaners are not “alive”.  Bio-enzymatic cleaners, however, do combine enzymes with bacteria, which are “alive”. Examples are drain cleaners and some pet stain removers.  

Enzymatic cleaners are marketed to pet owners (and even more so to cat owners) because cat urine can be especially concentrated (cats make the most of the little water they drink), and so once it’s deposited, the ammonia and hormones in the urine start to smell, and bacteria start breaking it down into urea.  It’s an unmistakable fragrance, and enzymatic cleaners are regularly recommended by veterinarian and pet experts for pet accident cleanup (the ASPCA, mobile vet company The Vets, and professional veterinary site DVM360 are just a few examples).  

Some of the benefits of enzymatic cleaners are:

  • They tend to be more powerful by working on more substrates (surfaces, conditions) in lower concentration than chemical cleaners.  Therefore you use less, resulting in less packaging.

  • They work at moderate pH and temperature, allowing for milder detergents and less energy, like cold-water laundry detergents.

  • Enzymes are not mutagenic (causing changes in DNA) and not clastogenic (causing breaks in chromosomes).  They are not reproductive or developmental toxins and have a low toxicity to aquatic systems.

Some of the cons of enzymatic cleaners are:

  • They can have storage time limitations before the enzymes become less active.

  • They can have storage temperature limitations.

  • They can take longer to work.

  • Some enzymatic cleaners (especially carpet cleaners as in this video) can leave an oily sticky residue if the cleaner is not washed away, which can attract soil/stain even more.

  • They can have inhalation dangers if the cleaner is in powder form, but many formulations are now in dust-free granules that avoid this danger.

  • They can be incompatible with other cleaners like bleach and chemical disinfectants, which can deactivate the enzymes.

So, here are some enzyme cleaners you might like to try:

For pet owners:  Rocco & Roxie Stain & Odor Eliminator for Strong Odor - Enzyme Pet Odor Eliminator for Home has a LOT of fans for the way it quickly and thoroughly eliminates pet odors and stains (just read some of the comments/watch videos).  Although their ingredients are a bit mysterious (Water, advanced biological blend, non-ionic surfactant, odor counteractant), the company says it is safe to use around pets and children, and certified safe for all carpets from the Carpet and Rug Institute (CRI).  They also offer a 100% money-back guarantee if you’re not satisfied.

For anyone who cleans: TweetMint Enzyme Cleaner contains no volatile organic compounds (VOC) or synthetic chemicals. It's completely free of artificial colors & fragrances, preservatives, animal products or by-products and has not been tested on animals.  Since it’s concentrated, a little (just ½ oz) will make ½ gallon of medium-strength concentrate, and the website publishes a whole list of jobs like cleaning windows and floors, degreasing, stain removal, odor elimination, and even pest control (garden and home).  The active ingredients are purified water, anionic/nonionic surfactant blend, glycerin, enzymes, peppermint oil, sodium borate. Sodium borate is a naturally-occurring compound made of boron, oxygen, hydrogen, and sodium, and in 2020 the Cosmetic Ingredient Review (CIR) Expert Panel evaluated data and concluded that sodium borate is safe as a cosmetic ingredients in concentrations less than or equal to 5%.. (Sodium Borate: Is it Safe?)

For anyone who showers or washes clothes:  Zerotaboos (ok, just put a space in there to easily say it: zero taboos!) is a woman-owned company which uses prebiotics (simple sugars, which are food for beneficial bacteria) and postbiotics (Lactobacilli ferment filtrate) in their products to encourage growth of good bacteria so that you don’t need harsh chemicals and fragrances to smell better.  Their Laundry Enzymes contain 10% nuclease enzymes, the strongest concentration available and the best for breaking down body odor.  It doesn’t replace your regular laundry detergent, but does a good job of removing troublesome body odor from clothing so that it actually smells fresh again after washing!  This owner knows her stuff and cares about her customers (see video on why she stopped offering refill packaging). For sure, bacteria and their byproducts have fed odors and fears long enough…it’s time to turn the tables by putting good bacteria and enzymes to work for us!

Photo by Daiga Ellaby on Unsplash

Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners

Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners

If you haven’t read our white paper on mold, mycotoxins and mVOCs, you should!  While discussing the meanings of these scientific terms with our team, we thought it would be even more helpful to break it down to the vernacular.  Mold is like most other living organisms that excrete waste products.  Mycotoxins are not similar to excrement, in that they are not secreted because of normal growth, development or reproduction of the mold (they are secondary, not primary metabolites).  They are chemicals secreted in offense and defense, and in stressful situations.  Thus, mycotoxins are like sweat–the toxic sweat of mold (yuck!).  They can be sent aloft into the air on mold spores (which are also released whenever the mold is stressed or physically agitated), or even smaller fragments of mold and dust, which are all easily breathed in.  

Microbial Volatile Organic Compou0nds (mVOCs) are gasses as a product of growth, development or reproduction (some are primary metabolites), and as a signal to other microbes around them (secondary metabolites).  This means that mold uses mVOCs to communicate and affect the behavior of other molds around it, even as a competitive tool to directly exert antimicrobial activity (suppressing or eliminating potential enemies). (Volatile affairs in microbial interactions)  As such, mVOCs are akin to body odor–the toxic body odor of mold, which it uses to intimidate other mold!   Although they are meant to signal other microbes, even humans can recognize the smell of some mVOCs in that musty, earthy smell that is a tell-tale sign of mold.

It has been shown that the mycotoxins can be eliminated by various physical means such as thermolysis (destruction by intense heat), radiation treatment and low-temperature plasma (bipolar ionization).  They can also be destroyed by chemical methods such as oxidation (removal of electrons), reduction (addition of electrons), hydrolysis (breakdown by reaction with water), alcoholysis (breakdown by reaction with alcohol), absorption and adsorption, and biological methods by using living things like bacteria or other molds. (Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action)  Only two  of these methods are permitted to mitigate mycotoxins in foods, however, contamination of raw materials with chemicals and/or products of side reactions limit their use.

Alternatively, using enzymes to detoxify mycotoxins mostly avoids these problems.  First of all, what is an enzyme?   Enzymes are proteins produced by living organisms that act as catalysts in chemical reactions.  Enzymes can either build up or break down.  For our purposes, cleaning enzymes facilitate breaking down microbes and their byproducts that cause sickness, stinkiness or stains.  

Scientists have been exploring making artificial enzymes since the 1990’s, and many of these are mimicking enzymes found in nature.  Here are the most common types of natural enzymes (from Simple Science: How in the World do Enzymes Clean?):

  • Proteases break down protein-based soils including blood, urine, food, feces, wine and other beverages.

  • Lipases break down fat molecules like oils and grease.

  • Amylases break down starch molecules like eggs, sugars, sauces, ice cream, gravy.

  • Cellulases are used to soften fabric and restore color to fibers made up of cellulose material. They also remove particulate soil and reduce fabric graying and pilling.

Various enzymes can also be combined to treat the combinations of mycotoxins that are produced by some molds.  For example, cytochromes are enzymes that include a number of compounds consisting of an iron-containing molecule bonded to a protein (cancer.gov).  Cytochromes are usually used within mammals as detoxifying agents of multiple toxic compounds, including mycotoxins.  Cytochromes in the human liver are able to convert aflatoxin B1 (a cancer-causing mycotoxin) into Aflatoxin M1, which is 10 times weaker in carcinogenic potency.  In turn, glutathione s-transferase, another enzyme in our bodies, leads to the excretion of aflatoxins from the body (2016 study).   

Since the enzyme-based approach for degrading mycotoxins in homes is new, there aren’t that many commercial products on the market.  In fact, Green Home Solutions claimed in 2022 that it was the “is the only professional remediation company that combines the ANSI/IICRC standards for mold remediation with a state of the art proprietary disinfectant/ fungicide that not only kills bacteria and molds, but continues to work by breaking down the allergenic protein structures into harmless amino acids.”  It is only available for professional use, but their product description shows that several enzymes are combined for maximum effect on the broad range of mycotoxins that may be found in a home:

  • AMYLASE is an enzyme that digests the mold’s outer membrane or cell wall. It dissolves and causes the insides to leak out.
  • LIPASE is another enzyme in our product formula which attacks and breaks down the fatty lipids inside of and in between the mold membranes.
  • PROTEASE breaks down allergenic proteins at the mold’s core or nucleus, eliminating them from the air you are breathing.

Since we revealed the real nature of mycotoxins and mVOCs (they’re like toxic sweat and body odor), we thought you might like some real solutions you can use to get rid of these toxins in your home!   Elimination of the mold colony is first and foremost, so it’s best to contract an inspector if you can’t find or handle the problem yourself.  Getting rid of the bulk of mold will remove much of the mycotoxins and mVOCs, but mycotoxins can still be present in dust (they are very hardy and indestructible by heat), and mVOCs may be present in absorbent furnishings.  Here are some products and techniques that can rid your home of the remainder of these toxins.

  • Several top mold inspection and remediation companies in the US (The Mold Pros, Indoor Environmental Systems, Inc.) use CleanSeal CS4 as a fog to kill mold and other microbes on contact, with no toxic or lingering chemicals.  Since CleanSeal CS4 is 72% alcohol, it evaporates quickly and exceeds the CDC standards for mitigating Coronavirus/COVID-19.   It’s also safe to use around people, pets, electronics and fabrics (when properly applied, the fog settles gently and evaporates quickly so that there are no water stains or damage).
  • Likewise, EC3 is a non-toxic solution also trusted by many mold remediation companies and mold awareness sites, such as moldfreeliving.com.  It is a solution with citrus and essential oils which evaporates quickly and can also be used in the laundry or directly on pets’ fur as a sanitizer from mold.  
  • MoldStain T-Klear is recommended for all mold and mycotoxin products in use of a fogger or electrostatic sprayer.  
  • Most MVOCs can be mitigated with activated carbon filters, because they are in a gas form and can flow through and be adsorbed by the carbon molecules.  You can try our Germ Defender with carbon filters, or purchase carbon filters for your standalone HEPA unit.  Mycotoxins, however, will not be affected by carbon filters because mycotoxins are attached to spores, fragments of spores, and dust, which are not captured by carbon filters.

If you can’t remove all of the mold, the next best thing may be encapsulation.  Encapsulation is a controversial method in that it does not physically remove the mold but surrounds it with a protective layer that does not allow it to release spores or mycotoxins into the environment anymore.  If encapsulation is done properly, though, it can be a safe method that allows homeowners to save wet drywall and wood that have not dried out completely, by sealing any mold that is present and not allowing more to grow.  As demonstrated by EarthPaints, encapsulation either needs to be applied to completely dry substrates, or with a solution that allows the substrate to completely dry over time.  Their Lime Prime paint is a non flammable mineral shield that saturates wood fiber cells and pozzolanically reacts with concrete and gypsum. Encapsulated Substrates dry out properly and in 30-60 days are ready for follow up after a flood. (earthpaint.net)  The problem with mold encapsulation is that it must completely coat surfaces in a space with a durable non-toxic product, and of course the space must be clean and dehumidified, or the mold will “break through” and continue growing as dust and moisture allow it to propagate.  For more information on whether encapsulation is right for a space in your home, this article by a building biologist is very helpful.

Once again, we also find that bi-polar ionization (used in the Germ Defender, Air Angel and Whole-Home Purifier) should be effective against mycotoxins in the home.  Because bipolar ionization sends out positive and negative ions that cause small particles to clump together and fall out of the air, this reduction in particles means a reduction in mycotoxins, since mycotoxins ride on spores and fragments of mold.  More testing is needed in residential and commercial settings to confirm this, however, our case studies using bipolar ionization to reduce mold spore counts without any additional filters, are quite extraordinary!

Photo by Anne Nygård on Unsplash