Tag Archives for " trees "

Which is a healthier home habitat: the forest or the desert?

Which is a healthier home habitat: the forest or the desert?

Is it more healthy to live in or near a forest or a desert?  Spoiler alert: we’re not going to call that decision.  Each habitat has its advantages and disadvantages, so we’ll explore them to see which one is best for you.

You might think that these two climes are extremely opposite, but they do have (at least) one thing in common: trees!  Granted, there are many more trees in forests, but trees in the desert can accomplish many of the same purposes.  In a 2020 study, one particular type of tree found in Qatar (desert region), Acacia tortilis, was found to be the most efficient tree species for reducing air pollution, having good capacity to intercept storm water runoff, reducing energy consumption and reducing air pollution levels through dry deposition, avoiding further pollution formation and CO2 removal.  Mature trees (with diameter greater than 45 inches) were much more efficient at accomplishing these goals than younger trees (diameter 10 inches). 

According to the US Department of Agriculture (USDA), trees provide many benefits, including the ability to clean our atmospheric environment both directly underneath their canopies, and at a larger, regional scale. Because leaves transpire large amounts of moisture, trees have a cooling effect on the surrounding environment—like air conditioning. By cooling and cleansing the atmosphere, trees help to make air safer for breathing by plants, animals, and humans and have positive benefits on habitat. In fact, air quality underneath a closed tree canopy is often significantly better than above that tree canopy, especially for ozone—a common air pollutant that forms downwind of urban air pollution sources. On a regional scale, forests also scrub ozone and other nitrogen and sulfur-containing air pollutants out of the prevailing winds, protecting more sensitive areas.  Healthy forests with large, widely-spaced trees also protect from wildfire smoke because pines and other fire-adapted trees with their thick, fire retardant bark better resist fire in all but the most extremely hot, dry, and windy conditions.

Interestingly, some trees contribute to ozone production, while others reduce it.  This is because species like black locust, European oak and poplar intensively emit isoprene, which results in higher ozone and PM10 concentrations, while tree species emitting primarily monoterpenes such as beech, magnolia and wayfaring trees yield less of both.  (Impact of vegetative emissions on urban ozone and biogenic secondary organic aerosol: Box model study for Berlin, Germany)

Another common denominator between forests and deserts is animals–whether they are domesticated or wild, contact with animals is more frequent in remote areas than in urban areas.  There is also much research that shows how exposure to animals benefits us.  In one study, the researchers recruited 2 groups of young men:  20 young men who were raised for the first 15 years of life on farms with farm animals, and a second group of 20 young men who were raised for the first 15 years of life in a city of over 100,000 people, without daily exposure to pets. Both groups were then given Trier Social Stress Test (TSST), a model of acute psychosocial stress in humans. The results revealed that those who grew up in cities without daily exposure to pets, and thus lacked exposure to diverse microbial environments during childhood, responded to psychosocial stress with exaggerated inflammation markers,  (Less immune activation following social stress in rural vs. urban participants raised with regular or no animal contact, respectively)

Now, let’s talk about some specifics of each habitat.

Deserts

Although the stereotypical desert is hot, dry and sandy, only one of these words accurately describes every desert (dry).  Most experts agree that a desert is an area of land that receives no more than 25 centimeters (10 inches) of precipitation a year. The amount of evaporation in a desert often greatly exceeds the annual rainfall. Surprisingly, areas near water can actually be deserts, because humidity in the air doesn’t predict or cause rainfall.  The Atacama Desert, on the Pacific shores of Chile, is a coastal desert. Some areas of the Atacama are often covered by fog. But the region can go decades without rainfall. In fact, the Atacama Desert is the driest place on Earth, and some weather stations in the Atacama have never recorded a drop of rain.  (Desert)

Low humidity is obviously a benefit to keeping mold from growing on outdoor or indoor surfaces, if air conditioning is not needed.  Dryness would lead some to believe that mold could not be a problem in the desert.  However, mold spores are present everywhere, and lack of home maintenance can allow even a small amount of rainfall to turn into a mold disaster.  Mold can start growing undetected in attics, crawlspaces and walls during one of the infrequent rains, and can turn into a big problem whenever it is disturbed, such as during renovation or further deterioration.  If air conditioning is used, it can generate mold problems when moist air (like from cooking or showering) hits cold air, or around the surfaces where cold condensate is produced.   

Low humidity also means little to no mosquitoes and many other biting insects.  Low pollution (when the wind is not kicking up dust) and warm weather can also be a positive for those who suffer from breathing problems like asthma.  

One problem of low humidity is its effects on the human body (see our article).  Dehydration can become evident in dry skin, hair and nails, respiratory system and through your whole body, affecting every major system.  In addition, static electricity builds up in your clothing and furniture, which can hurt and damage electronics.  Finally, dry air allows pathogens to stay afloat in the air for longer periods of time.  

Most deserts have very little cloud cover and thus a lot of sunshine.  This, for sure has its benefits and drawbacks; it can be the cure for Seasonal Affective Disorder (SAD) but also present higher risk for skin and eye damage and cancer.  Exposure to UV sunlight was associated with lower systolic blood pressure (the first number in a blood pressure reading) regardless of the temperature. (Could sunshine lower blood pressure? Study offers enlightenment)  In addition, sunlight assists your body in making vitamin D, which strengthens bones, and sunlight promotes collagen production in your connective tissue, which helps you move quickly. (7 Health Benefits of Living in the Desert)

The purifying power of sunlight should not be underestimated.  Those who live in or near the desert can use the UV rays of sunlight to purify water, their laundry, and anything else they can bring outside for a good “freshening”. 

One important disadvantage to desert life is dust.  In fact, you don’t have to live in the desert to suffer from the effect of desert dust, because dust from deserts can be transported on the wind and even injected into the troposphere, allowing it to travel great distances (such as across the Atlantic Ocean in the case of Saharan dust).  Dust clouds at surface levels bring particulate matter, coarse and fine, worsening air quality and posing respiratory or even cardiovascular risks.(What is desert dust and how does it change atmosphere and the air we breathe?)  The danger of dust presents in two different ways: size of the particles and content of the particles.  Particles that are approximately between 2.5 to 10 microns (PM10) are inhalable, but can be trapped and cleared from the upper respiratory tract.  Particles less than 2.5 microns (PM2.5) can lung alveoli, entering the blood stream where they cause systemic harm to other organs in the human body. (A Retrospective Cohort Study of Military Deployment and Postdeployment Medical Encounters for Respiratory Conditions)  Especially concerning is the class of particles less than 1.0microns (PM1.0), which are sure to enter directly into the bloodstream and may also cross the blood-brain barrier.  The toxic content of dust can be pathogens such as bacteria, including some that carry respiratory diseases (Characterization of Bacteria on Aerosols From Dust Events in Dakar, Senegal, West Africa), and most importantly, a fungus Coccidioides which causes Valley Fever.  It can also be bioreactive metals such as copper, chromium, nickel, lead and zinc, as well as pesticides, herbicides, radioactive particulates and aerosolized sewage (yuck!!). (Desert dust storms carry human-made toxic pollutants, and the health risk extends indoors)

Increased heat and low humidity also tends to decrease the number of negative ions in the air.  Elevated negative air ion levels are widely reported to have beneficial effects on humans including enhanced feeling of relaxation, and reduced tiredness, stress levels, irritability, depression, and tenseness. Depleted ion levels and enhanced positive ion levels are reported to have no effect, or deleterious effects. (Air Ion Effects

The study of how gasses in the earth’s atmosphere react with each other is very complex.  For example, it’s been shown that desert soil releases nitrogen species gasses into the air.  The release of NOx from desert soil and subsequent effective oxidation in the atmosphere indicates that the desert ecosystem is an important area for ozone production. This has been manifested by higher ozone in the desert air than the regional background from many observations (Güsten et al., 1996; Hoffer et al., 1982).  (Active Nitrogen Cycle Driven by Solar Radiation in Clean Desert Air)  Thus, higher levels of ozone in the desert could make it unhealthy for sensitive individuals.  These could become particularly high after rains, when microbes in the soil emit N2O (nitrous oxide, also known as laughing gas).  (Following rain, desert microbes exhale potent greenhouse gas)  In addition, it’s been shown that “stratospheric intrusions” (ozone-rich air descending from the stratosphere during spring storms) can also capture ozone created by pollution from Asia as they descend and transport it to desert areas of the southwest.  Particularly in the area of Las Vegas, these can create short episodes of high ozone that exceed federal air quality standards without factoring in local pollution.  (Background ozone burdens Las Vegas’ air quality in spring)

The other side of the coin is that in some areas of the world (like Atacama and Sechura deserts in Chile and Peru), dust from deserts can contain significant iodine, which actually destroys ozone.  (Iodine in Desert Dust Destroys Ozone)  Therefore, the mineral makeup of the soil in deserts is very important in characterizing what’s in the air. 

Living in/near the Forest

Forest bathing” is a Japanese term that emerged during the 1980’s as an antidote to tech burnout: it’s being calm and quiet amongst the trees, observing nature around you whilst breathing deeply can help both adults and children de-stress and boost health and wellbeing in a natural way. (How to start forest bathing)  If you regularly spend quiet time in the outdoors, perhaps you are already aware of its benefits: lower blood pressure, heart rate, and levels of harmful hormones like cortisol.  (Forest bathing: What it is and why you should try it)

What is in the air of forests?

Phytoncides are aromatic compounds from plants which can increase your number and activity of natural killer cells, a type of white blood cell that supports the immune system and is linked with a lower risk of cancer. These cells are also believed to be important in fighting infections and inflammation, a common marker of disease.  In one study, researchers found that people who took a long walk through a forest for two days in a row increased their natural killer cells by 50% and the activity of these cells by 56%. Those activity levels also remained 23% higher than usual for the month following those walks. (Why Spring Is the Perfect Time to Take Your Workout Outdoors)

Hinoki cypress, cedar, oak, pine and spruce are just some of the trees to release phytoncides (aromatic compounds), which include alpha-pinene and d-limonene.  Although these are actually VOCs, they are termed biogenic VOCs (BVOCs) because they are naturally made, unlike chemical VOCs that are manufactured.  Pinene and limonene are monoterpenes, which global annual emissions amount to 330–480 million tons. When visiting a forest, monoterpene VOCs such as limonene and pinene are mainly absorbed through inhalation, their blood levels rapidly rise after exposure, and they are mostly eliminated unchanged both in exhaled air and in the urine.  The tree composition can markedly influence the concentration of specific VOCs in the forest air.  Although essential oils do contain BVOCs, not all BVOCs are present in essential oils, and some molecules included in essential oils are not part of the BVOC molecular suite but are rather artifacts of distillation. (Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review)

Some other benefits of forest living are:

  • Humidity: in moderate amounts, humidity is good for the skin and respiratory system, 

  • Cooling effect: trees cool air through evapotranspiration. As trees transpire, they release water into the atmosphere through their leaves. As the water changes state from liquid to vapor, the surrounding air is cooled, similar to how we sweat.

  • Particulate matter capture: Forests can improve public health greatly by catching dust, ash, pollen and smoke on their leaves, keeping it out of our lungs.

  • Trees are sinks for other harmful pollutants, such as nitrogen oxides, ammonia and ozone, which can all cause respiratory problems from repeated exposure. (The Important Relationship between Forests and Air)

  • Healthy forest air includes bacteria, fungal spores, plant and animal particles and pollen, which may have good and bad effects.  Good effects of exposure to these include desensitization to allergies (exposure therapy), and certain bacteria, like Mycobacterium vaccae (a bacteria strain that lives in soil), which can stimulate serotonin production, and can make you feel relaxed and happier, as well as reduce inflammatory responses to stress. According to Dr. Christopher Lowry, “Surprisingly, when adults engage in soil-mixing activities for ten minutes with soil that is ‘spiked’ with M. vaccae ATCC 15483, there is a rapid alteration in brain activity within the occipital cortex and alteration in the plasma metabolome, relative to soil that is not spiked with M. vaccae ATCC 15483 [35]; this suggests that exposures to mycobacteria not only have long-term immunoregulatory effects but also alter physiology and neurophysiology within minutes. Perhaps we all really should spend more time playing in the dirt.” 

  • Ions: That “fresh air” feeling in the forest also comes from higher than normal presence of ions.  Negative air ions (NAIs) are an important indicator of air quality, and are significant for the evaluation of air conditions. In a 2020 study of a scenic area in China, negative air ions were present in forested areas  approximately 3.2-3.4 times over the numbers in open areas or the lake.  (For more information on the cleansing power of ions, read our post here!)

And the cons of forest living: 

  • Humidity: many forests are high in humidity, which can promote mold growth.  Without dehumidification in a home, it would be difficult to live in many forested areas because of mold growth. 

  • Radon: Trees are sources, sinks, and conduits for gas exchange between the atmosphere and soil, so radon, a product of uranium decay in the soil, is naturally expired by trees along with other gasses.  Although radon accumulation in homes through their foundation (the rocks and soil below the foundation) is most concerning, emission of radon by trees will cause a forest to have a higher level of radon than unforested areas, because radon is approximately 7.5 times heavier than air, so that living in or near the forest may increase the ambient level of radon outside the home depending on winds.  There are two units of measurement for radon, picocuries per liter, and becquerels per cubic meter.  According to a 2015 study in Brazil, radon concentrations as high as 40 kBq/m3 (40,000 Bq/m3) were found in a national forest.  The EPA recommends that homeowners take action to lower radon levels in their homes if there is a level above 2 pCi/L.  Since one pCi/L is equivalent to 37 Bq/m3, the measurement in the Brazilian forest showed 1,081 pCi/L, or 250 times the upper limit of radon recommended by the EPA!  Thus, the study rightly inferred that “the results indicated considerable radon hazard for human occupation in the neighborhood.”

Overall, the desert and the forest are two vastly different climates, yet each have potential for healthy lifestyles for those who can live further away from urban areas.   From forest bathing to hiking to biking, there are plenty of ways that each environment offers us to connect with nature and take in its natural health benefits. 

Surround yourself with trees, and your heart will thank you for it!

Surround yourself with trees, and your heart will thank you for it!

We tend to surround ourselves with what brings us comfort.  It might be your favorite music, your favorite color, your favorite art, and even your favorite pillow or type of sheets when you go to bed.  What if your source of comfort actually made you healthy?  Where you live and what you do with your property is an important choice that can affect your heart health.

We’ve been told for some time that plants have psychological and physical benefits–just look at this page of studies!  A new study (2021) correlates the proximity of living near trees, to arterial stiffness.  According to a 2010 textbook, “Arterial stiffness describes the rigidity of the arterial wall. In the last decade, there has been increasing interest in the potential role of arterial stiffening in the development of cardiovascular disease in adults.”  In addition, the 2015 book Early Vascular Aging states, “Arterial stiffness is a hallmark of arterial aging. As with all other organ systems, changes in the vascular system are induced over time.”  This is very important, because cardiovascular disease (CVD) is the leading cause of death worldwide.  Although many associate CVD with genetics, “recent estimates suggest that up to 70%–80% of CVD burden could be attributed to non-genetic environmental factors, such as lifestyle choices, socioeconomic status, air pollution, lack of surrounding greenness (2), and residential characteristics (2018 study). Indeed, emerging evidence has shown that living in greener areas results in improved health and is associated with lower mortality (2016 study on mortality of women, 2016 study on green spaces and mortality), and reduced CVD risk (2019 study, 2012 study).”

How does the “proximity to greenness” cause these positive effects?  Is it because vegetation promotes exercise or a healthier lifestyle?  Or because it reduces stress?  Trees do have the ability to filter and block particulate matter, and it has been shown that people living in greener areas were exposed to lower levels of volatile organic compounds (2020 study).The 2021 study focused on reduction of pollution, particularly ozone and PM, due to plants and trees in specific radii around the home, and the effect of the reduced pollution on the participants’ arterial data.

What is proximity to greenness?  The study used satellite-derived normalized difference vegetation index (NDVI) for a 200-m and 1-km radius around each participant’s home; the 200 m range was directly around the home, while the 1 km radius indicated walking distance.  Data on ambient levels of pollutant concentrations were retrieved from regional EPA-validated monitoring stations in the Louisville, KY region, that report daily pollutant levels.  The data included PM2.5, PM10 and ozone. 

Here are some specific results: 

  • At smaller radii (200 m) buffer around the home, inverse associations between standard deviation of NDVI and augmentation pressure, aortic pulse pressure, and aortic systolic pressure were observed (as greenness goes up, arterial stiffness goes down). 
  • Significant positive associations between several arterial stiffness metrics and pollutants in low greenness areas were observed, whereas the association between pollutants and arterial stiffness measures was not significant in areas of high greenness (as greenness goes down, arterial stiffness goes up).
  • Arterial stiffness was only associated with NDVI at the 200-m radius, but not the 1-km radius, giving support to the theory that because roadways are sources of pollutants, street trees within a 200-m radius around the individuals’ residence would be more relevant in blocking exposure to pollution. 
  • It was shown that ozone, but not PM2.5, was significantly associated with higher augmentation index (increased arterial stiffness). This suggests that ozone-induced effects on arterial stiffness are independent of PM2.5 exposure and potentially stronger.
  • In addition to modifying the effects of air pollution, proximity to greenness may improve cardiovascular health by decreasing mental stress. Exposure to natural outdoor environments has been found to be associated with better mental health and could facilitate stress reduction (2017 study), and neighborhood greenness is associated with lower levels of self-perceived stress and depression (2018 study), particularly in older adults. In our work, we have found that higher levels of residential greenness are inversely associated with urinary levels of the stress hormone—epinephrine (2018 study). Hence, it seems plausible that some of the effects of greenness on arterial stiffness may be mediated by a reduction in mental stress. 

How can we apply these findings to our own lives?  Since “greenness” is good for our bodies, plant as many trees and shrubs as possible, and encourage your neighbors to do so as well, by letting them know how good it is for them and the neighborhood.  The 200 meter radius is equivalent to 656 feet, which when converted to square feet (656 x 656) is equivalent to 2.3 acres.  That is a big green space that not many people own for their own property, but when spread out over a neighborhood or nearby park, it is certainly achievable.  If you live near a busy highway or road, definitely plant as much green area on the border of your property as you can. 

Some tree species are better than others at absorbing pollution, because as we’ve mentioned in other posts, some plants take in ground-level ozone, while other plants emit isoprene, a VOC that reacts with other atmospheric chemicals to create ozone. (Scientific American).  You definitely want the former type!   Here are some tips:

  • A free online tool called i-Tree Species helps you to select the best plants depending on desired hardiness (after all, if the plant won’t live in your area it won’t do much good to introduce it), mature height and environmental factors such as air pollution removal and air temperature reduction, among other factors.
  • In one recent study, Barbara Maher and colleagues at the University of Lancaster tested the ability of nine tree species to capture PM in wind-tunnel experiments. Silver birch, yew and elder trees were the most effective at capturing particles, and it was the hairs of their leaves that contributed to reduction rates of 79%, 71% and 70% respectively. (bbc.com)
  • Conifers, such as pines and cypresses, are the best pollution filters, while London plane, silver maple and honey locust ranked above average too, according to Jun Yang, an urban ecologist at the Center for Earth System Science, Tsinghua University in Beijing. (bbc.com)
  • If you have the opportunity to give input for city-wide greenery initiatives, be aware that taller species of trees can trap pollutants in areas, so sometimes shrubs are better when narrow streets are surrounded by tall buildings. 
  • If you do have a large property or even a city park to design, remember to diversify the species so that certain pests or adverse conditions like too much or too little rain will not wipe out the whole property.  

In all, green spaces mean gold stars for your heart health, so it’s time to start seeing green!

Photo by Pankaj Shah on Unsplash