Tag Archives for " mycotoxins "

Are there any new mold detectors on the market?

Are there any new "mold detectors" on the market?

If you have had a brush with illness-causing mold or suspect that there may be toxic mold growing somewhere in your home, we understand the desire for speedy detection and remediation!  Often, the solution also has to lie within a modest budget.  Traditionally, that demanded a trade-off between Do-It-Yourself (DIY) mold detection versus calling in professionals.  We’ve written about DIY mold test kits and how they work, but what else is available when the mold can’t be seen?  Ian Cull of the Indoor Air Quality Association made a three-part video on how to detect mold in walls, but we tend to advise homeowners NOT to do some of the things he mentions:

  1. We recommend that you DON’T cut a large hole in your drywall with a saw to peek inside.  This presents a number of problems: patching the hole if you don’t find mold, potentially cutting electrical wires or plumbing in the process, and disturbing mold that will be released throughout the home!

  2. We recommend that you DON’T “sniff” around electrical or cable outlets for microbial volatile organic compounds (mVOCs): these are the musty, earthy smells that mold produces when it’s growing. The drawbacks are that there may not be an outlet where there’s mold, and of course, you’re inhaling mVOCs and potentially mold spores and mycotoxins, very deeply into your lungs!  Instead, check out the VOCs and Mold Test option below.

  3. Use a borescope (also called an endoscope or snake camera)–it’s a very small camera that can fit through a very small hole!  Some have mirror attachments that can look at the back side of the drywall.  They used to only be used by professionals, but now are available for under $100.

  4. Looking for moisture: Since mold needs moisture to grow, a moisture meter is a cheap way to see if that moisture is present in the wall.  A more expensive piece of equipment is an infrared camera, which sometimes requires experience to understand what you are seeing.  However, these only find active moisture and mold problems (not if the area has dried out).

  5. Lab-based methods: taking samples of the air in the room. This may cause elevated counts in that room, but it will not pinpoint the source of the mold.  It may also not pick up mold in the wall.

  6. Lab-based methods: taking samples of air within the wall.  This is more specific to the area, however there’s not a threshold and this type of test may give false positives or false negatives.

Besides these (sometimes) destructive methods, we’ve written about blacklights that can show mold or water staining.  Also, using an N-95 mask or equivalent, you could:

  • Carefully remove a baseboard to see if any mold is present at the bottom of the drywall or on the plate (wood stud sitting on top of the floor).  You can also make a hole just above the plate but still under the top of the baseboard, if you want to do any testing in the wall cavity.

  • If you have pocket doors, you can peer into the cavity of the door to check the backside of the drywall. 

  • If there’s carpet in the room, use a pair of pliers to pull the carpet away in a corner to see if there’s mold under the carpet or baseboard.

  • If you have access to the wall from the attic or the crawlspace, you can use a drill to drill through the top or bottom plate and use a borescope to see “into” the wall.  Be sure to use a mask and plug up the hole afterward!

These are fairly standard ways to look for mold in a wall, but here are some new ones that have popped up recently.

VOCs and Mold Test: Because “black mold” like Stachybotrys does not always release a significant amount of spores unless it is disturbed, detecting mold that is enclosed in a wall can be difficult.  However, microbial VOCs (mVOCs) are the gasses given off by mold, they can be more easily detected, and are exactly what this test specializes in.  The sample pump and test tubes are shipped to you with instructions, which are also available in video form on the website.  After sampling, the equipment and tubes are mailed back for analysis. The only difficult part of this test may be complying with keeping the outside doors closed for 24 hours before the test.  It doesn’t detect mycotoxins, but where there’s mVOCs, there also may be mycotoxins.  The real-time version of this type of testing is called zNose, and it’s used in airports and building security, food manufacturing, and many other industries to detect VOCs from trace explosives, chemicals and microbes.

The Healthful Home 5-Minute Mold Test is unique.  The company has a patented way to check for Stachybotrys Chartarum and Penicillium/Aspergillus species using a swab test, which are just two of the most common toxic molds.  The test seems similar to an at-home pregnancy test: use liquid from a swab sample to fill the reservoir on the mold detecting devices, and wait five minutes for the “positive” lines to appear.  The test was reviewed by an actual mold inspector in this video and he found the results concurred with lab testing of the same sample.  However, readings can sometimes be misleading on the at-home test.  It’s a good start…we would like to see more tests like this.

Hire a rescue dog: According to this video, specifically trained dogs are 95% accurate.  They point out the location, and are accurate and faster than other testing.  Dogs that are specifically trained to be mold detectives are used in Canine Mold Detective.  Buddy was the first dog trained in this way, initially trained for a thousand hours in three months, and he continues his training daily with his owner Lacey.

We at HypoAir have not physically reviewed this device, but the BioMatrix Mold Monitor is a unique in that it scans temperature, relative humidity, dew point, absolute humidity, and equilibrium moisture content (EMC), and feeds these into a mold algorithm to determine if the area around it is at a high risk for mold.  The device is activated when the moisture meets one of 3 specialized sensors on the back of the unit, triggering an alarm that will alert you to potential problems. The product is powered by one 9-volt battery, which should last for 3 years (battery not included).  It also comes with a Free Virtual Mold Inspection Service by a team supervised by Industrial Hygienists experienced with mold inspection and remediation. They can perform a virtual walkthrough of the environment by video call and a structural history review to identify the potential mold exposure risks associated with each incident. Once identified, they will be available to answer any questions, provide a suggested course of action, and offer helpful resources. 

Sometime in the future, Unmanned Aerial Vehicles (UAVs or more commonly, drones) could be employed to detect indoor pollution sources.  According to this study, people have begun to try using UAVs to locate indoor gas sources, and it actually could save money: one drone could replace an extensive sensor network.  

For more advanced warning devices for mold, check out our article on leak detectors.  Overgrowth of mold in your home is just too costly in terms of your health and money to repair damages, so it’s worth looking into detectors and safeguards to detect it or its precursor, moisture. 

Photo by Ali Hajian on Unsplash

Indoor Mold Summary White Paper

Indoor Mold Summary White Paper

What is indoor Mold and how does it affect us? 

Overgrowth of mold in the home can produce high levels of mycotoxins and microbial volatile organic compounds (mVOCs), causing illness.  

While there is much more for the scientific community to explore, thankfully there is a growing focus on mold in our environment with a significant amount of new research being conducted on these topics.  

What are mold, mycotoxins and mVOCs?

Mold includes various types of fungus that grow on damp or decaying organic matter.  Mold can grow outdoors or indoors; it only needs moisture and a carbon source. 1  Outdoors, moisture from the ground and decaying leaves or wood provide the perfect habitat for mold.  Indoors, moisture from the air (excess humidity) or from a leaking pipe or roof will saturate a substrate such as wood, cardboard or even dust, and provide the moisture and carbon food for mold to grow. It produces particulate pollution (physical spores that replicate and spread) as well as various chemical byproducts. 

Mycotoxins are secondary metabolites, which are organic compounds that are produced by various organisms that are not directly involved in the growth, development, or reproduction of the organism but are essential in the ecological and other activities (contrasted with primary metabolites, which are directly involved with these activities).2  These are chemicals that are specifically toxic to humans, which scientists believe the mold produces to cause plant disease, defend the mold from other microbes, or simply when the mold is stressed. 

Mold can cause two broad types of disease, mycoses and mycotoxicoses.

(1) Human mycoses3:

  • Are caused by growth of the fungi on or in our bodies, which can be treated with antifungals.  (Mycotoxins produced while the mold is in the body cause a secondary reaction).

  • are mainly caused by opportunistic fungi, which produce illness by taking advantage of debilitated or immunocompromised hosts 

  • are frequently acquired via inhalation of mold spores from an environmental reservoir or by unusual growth of a commensal species that is normally resident on human skin or the gastrointestinal tract

  • portal of entry can be through the pulmonary tract or direct contact with the skin

  • are largely diseases of the developed world, usually occurring in patients whose immune systems have been compromised by advanced medical treatment.

(2) In contrast, mycotoxicoses: 

  • Are caused by dietary, respiratory, dermal, and other exposures to the mycotoxins, causing “poisoning by natural means” similar to the pathologies caused by exposure to pesticides or heavy metal residues.3

  • Can be successfully treated by regimens of mycotoxin antigens, sauna, oxygen therapy, and nutrient..4

  • Are common in underdeveloped nations due lack of resources to harvest and store foods properly.3 However, it is hypothesized that mycotoxicoses in the Western World are mainly due to inhalation of mycotoxins from mold growing in indoor environments (our inference from mold experts). 

As a company focused mainly on air quality, HypoAir has focused on mycotoxins that cause illness due to inhalation (which are mainly mycotoxicoses), as a result of mold growing indoors and releasing conidia (entire spores or fragments of mold or its spores) that contain mycotoxins.  In samples collected from water-damaged indoor environments in Sweden in 20075, here are the main mycotoxins found:

  • Trichodermol and Verrucarol are trichothecenes. Trichothecenes are a very large family of chemically related mycotoxins produced by various species of Fusarium, Myrothecium, Trichoderma, Trichothecium, Cephalosporium, Verticimonosporium, and Stachybotrys molds. Trichothecenes inhibit protein synthesis in human and animal cells. 6,7

  • Sterigmatocystin is also generated by Aspergillus molds.  It is structurally and biologically related to aflatoxins and is regarded as a precursor of aflatoxin B1 (see below). Therefore, the acute toxicity and carcinogenic properties of this mycotoxin are similar to those presented by aflatoxins, although less potent, and Sterigmatocystin has been recognized as a group 2B carcinogen.8

  • Satratoxins G and H are produced by the black mold Stachybotrys chartarum.  Neurotoxicity and inflammation within the nose and brain are potential adverse health effects of exposure to satratoxins and Stachybotrys in the indoor air of water-damaged buildings.9

  • Gliotoxin is produced by the common indoor mold genus Aspergillus and is immunosuppressive (it can dampen the body's ability to ward off disease and infection). To do this it impairs the activation of T-cells and induces cell death in monocytes, a type of white blood cell.10

  • Aflatoxin B1 (AFB1) is one of the most potent carcinogens in foods, and it was postulated to account for the prevalence of hepatocellular carcinoma (HCC) in high exposure areas. 11

Volatile Organic Compounds (VOCs)

VOCs are gasses and can be anthropogenic (produced by human activity) or biogenic (produced by living organisms, but more specifically plants and animals).   A subclass of biogenic VOCs is microbial VOCs (mVOCs), which are gasses produced by bacteria or fungi.  Indoors, mVOCs diffuse through and sometimes accumulate in the air.  Some mVOCs are responsible for that “musty” odor that is the telltale sign of mold growth (such as geosmin and 1-octen-3-ol), but others can be odorless. Compounds with eight carbon atoms, such as 1-octen-3-ol, 3-octanol and 3-octanone are among the most common fungal VOCs, and among fifteen of the most prevalent mVOCs in water-damaged buildings (thse are 2-methyl-1-propanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 2-pentanol, 3-octanol, 1-octen-3-ol, 2-octen-3-ol , 3-methylfuran, 2-hexanone, 2-heptanone, 3-octanone, 2-methylisoborneol, 2-isopropyl-3-methoxy-pyrazine, geosmin, and dimethyl disulphide).12  Although these mVOCs have not been tested for carcinogenicity, DNA damage was detected for all fifteen of the common mVOCs. 13  Low concentrations of the vapor form of several C-8 compounds including 1-octen-3-ol are toxic to larvae and adult fruit flies.  Moreover, 1-octen-3-ol (octenol for short and also called mushroom alcohol) selectively affects dopaminergic neurons in adult Drosophila (fruit fly) brain and induces Parkinson’s-like behavioral alterations in a fly model for this disease.14,15  Volatile phase 1-octen-3-ol was 80 times more toxic than the volatile phase of toluene in stem cells studies.16  Unfortunately, due to studies mostly conducted on the liquid phase of octenol, the FDA has approved it for use in foods and perfumes, and the EPA has approved it for use in insect lures. The problem with the vapor phase octenol is, like other VOCs, concentrations can build up in enclosed spaces like basements, attics, and even whole homes if they are not ventilated.

Image source: (17) 

How do mycotoxins and mVOCs overlap?

Mycotoxins are only found in solid or liquid form, while mVOCs are gaseous.  However, mycotoxins and many mVOCs are both toxic products of mold.  Therefore, overlap exists in the toxic category, but the science community doesn’t think that mVOCs should be called mycotoxins.   Why?

  1. The condition of secondary metabolites: mycotoxins are all secondary metabolites, encoded by clustered genes that are easy to detect in genomic data. Only some fungal volatiles (e.g., the terpenoids) are secondary metabolites. 18 

  2. There already are other classes of toxic metabolites made by fungi that are not called mycotoxins. Terms like “antibiotic,” (compounds toxic to bacteria), “mushroom poison” (compounds made by mushrooms) and “phytotoxin” (compounds toxic to plants, or confusingly, made by plants19) are used to label certain other categories of fungal products with toxigenic properties. 18 

  3. Since many of the VOCs that have been studied are breakdown products of fatty acids, mediated by lipoxygenases, or are made by simple biotransformation steps from amino acids, we are not certain whether the VOCs we detect in profiles from growing fungi are the direct products of fungal metabolism or are merely incidental breakdown products.18

For these reasons, one article proposes the name “volatoxin” for those mycotoxins which are volatiles.18  Whatever they are officially named, mVOCs have the potential to be harmful to humans, especially if they are allowed to accumulate in a closed space.

Mold Naturally found outside vs trapped indoors

Mycotoxins and mVOCs found outside are normally diluted due to the abundant circulation of fresh air around and through them.  It is entirely different indoors.  Just as CO2 can build up from exhalation of inhabitants in a closed space, mVOCs from mold can also become concentrated in closed atmospheres, and mycotoxins become airborne whenever mold is disturbed, even from the airflow created when a window or door is opened.  

Where are these high concentrations found?  Spaces like the following are ripe for “biohazard” conditions concerning mVOCs and mycotoxins: 

  • Damp basements

  • Enclosed crawl spaces

  • Attics with leaky roofs or otherwise high ambient humidity

  • Backyard sheds

  • Non-climatized storage units

  • Vacation homes that are closed up without air conditioning or ventilation

  • Homes damaged by natural disasters or neglect, that are abandoned

  • Commercial buildings that have not been occupied or climatized in some time

The combination of lack of ventilation (for dilution) and excess humidity and darkness makes these spaces the perfect environment to grow mold and all of the toxins it emits.

How does Polar Ionization affect mycotoxins and mVOCs?

Our Polar Ionization uses Carbon Brush style Needlepoint Ionization to split the normal water vapor (H2O) in the air into millions of positive Hydrogen ions and negative Oxygen ions, without the production of ozone.  These natural ions are in proper balance and are stable enough that they can last a minute or longer as they travel in the airflows of an HVAC system or room giving them sufficient time to interact with air and surface contaminants in large buildings. Ions are any molecule or atom where the number of electrons does not equal the number of protons. These ions are very effective against a wide range of particulate, biological and chemical contaminants.  

Due to their type and stability they:

  • can provide purification for large areas with reasonable upfront costs and no ongoing replacement parts 

  • can react with both airborne and surface based contaminants opening up many new applications for safe active sanitization of occupied spaces.

  • Remove static electricity, and as such are able to travel much further than negative ions.  

  • Due to their balanced nature, they do not create unwanted ozone unlike devices that produce negative only ionization

Ability of Polar Ionization to protect against Mycotoxins and Mold Related Particulates

Mycotoxins can be transmitted through ingesting contaminated food, or they can become airborne, attached to spores of mold (conidia) or fragments of conidia.  According to a 2005 study 20, mycotoxins from Stachybotrys Chartarum (specifically trichothecene mycotoxins) were found on intact spores, which are larger (about 5 microns in diameter) as well as fragments of mold and other smaller particles (1.2 microns and below). These mycotoxins are known to react primarily with mucous membranes of the upper respiratory tract and eyes, leading to irritating erythema, inflammation, and pain. 20  In an earlier study, Trichothecene mycotoxins were found on Stachybotrys atra conidia of 5 micron diameter on average, indicating that these mycotoxins are easily respirable.21

The term PM2.5 is often used to refer to particulates 2.5 microns and less in diameter. For reference, a human hair is around 50-100 microns (μm) in diameter.  The human body has many natural defenses against large particulates like these.  In general, we consider extremely small PM2.5 contaminants to be far more dangerous and difficult to remove than larger particulates. Even smaller, 0.3 microns are considered the Most Penetrating Particle Size (MPPS) due to their difficulty to capture.  A HEPA filter's efficiency rating is specifically tested at 0.3 microns (not larger or smaller particles) because it is addressing a variant of the filter's minimum efficiency. 

Polar Ionization removes particulates from the air primarily through making them group together making them larger, heavier, and often with a negative or positive charge.   Those same larger, heavier, and charged particles can not stay airborne for long and are relatively easy to trap in a mechanical filter or easily vacuumed up from the ground after they settled.   Polar Ionization can quickly remove well over 95% of airborne particulates (including spores) without any physical mechanical filtration whatsoever (HEPA).  Due to its mode of action, it can also improve the filter rating of any mechanical filter used in the same space by several levels.  The use of mechanical filtration in addition to Polar Ionization is often unnecessary, however it can improve the speed of removal of particulates especially with those with high sensitivities.  At HypoAir we are quick to recommend redundancies in air purification where the needs of the occupants require faster removal of particulates and when finances allow. 

Numerous case studies conducted by independent labs show how mold spore counts (and thus by inference, mycotoxins carried on the mold spores)  were dramatically reduced in the air of closed environments by employing HypoAir’s Polar Ionization without additional filters.22 

Ability of Polar Ionization to break down mVOCs

The Polar Ions are also effective at breaking down VOCs & odors at a molecular level, specifically gasses with electron volt potential below 11. This is by design as the power output is capped at 12.07eV in order to prevent the formation of ozone since oxygen has an electron volt potential of 12. Formaldehyde (CH2O) for example has 10.88 as its electron volt potential and can be dismantled down into harmless carbon dioxide (CO2) and water vapor (H2O).  Similarly Ammonia (NH3) with an electron volt potential of 10.07 is broken down into harmless nitrogen (N2) and water vapor (H2O) (nitrogen naturally makes up about 78% of earth’s atmosphere).   Due to the method of production and stability of the ions, no ozone is produced in this process and the theoretical issue of incomplete oxidation or unintended byproducts is addressed with net VOC reduction.  One example showing proof of these breakdown reactions was obtained by measurement before and after installation of a bi-polar ionization device in the HVAC system of Houston Methodist Hospital, which reduced Total VOCs (TVOCs) to acceptable levels with activation of the device after many months of poor air quality complaints and failure of carbon filters to adequately clean the polluted air intake.23

The following are electron volt potentials of some of the most common mVOCs in water-damaged buildings24:  

Common mVOCs

Electron Volt Potentials

2-methyl-1-propanol

9.7

3-methylfuran

8.39

2-hexanone

9.34

2-heptanone

9.33

3-octanone

9.19

dimethyl disulphide

8.46

Additional efficacy against more complex chemical compounds and high concentrations of odors can be found with our products that combine Polar Ionization with Activated Carbon, AHPCO and/or our TotalClean i2 spray.

Ability of Polar Ionization to Neutralize Biological Contaminants on Surfaces and in the Air

Polar Ionization has been well tested in our products and in other devices that produce the same type of ions to neutralize certain bacteria, mold, and viruses in the air and on surfaces.  Polar Ionization & Mold Spores in particular have been tested many times, including a 99.50% kill rate tested by GCA over a 24 hour period. 25 The Polar Ions are effective at disrupting these biological contaminants by breaking down their surface proteins which results in inactivation or lysis.  The efficacy of Polar ionization on viral (Feline Coronavirus, Coxsackie Virus, Polio Virus, SARS Coronavirus) and other biological threats (TB, MRSA, VRE, C. Diff) has been proven for years by a wide range of independent studies with more information, sources, and studies found on hypoair.com.

For more info about our proprietary products and technologies, please visit www.hypoair.com

References:

  1. Indoor Environmental Quality: What is Mold? (n.d.). Retrieved from https://www.cdc.gov/niosh/topics/indoorenv/whatismold.html

  2. Sapkota, A. (18 January 2022). Primary vs Secondary Metabolites- Definition, 12 Differences, Examples. Retrieved from https://microbenotes.com/primary-vs-secondary-metabolites/

  3. Bennett, J. W., Klich,  M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497–516.  https://doi.org/10.1128%2FCMR.16.3.497-516.2003

  4. Rea, W.J. (2018). A Large Case-series of Successful Treatment of Patients Exposed to Mold and Mycotoxin. Clinical Therapeutics, 40(6), 889-893. https://doi.org/10.1016/j.clinthera.2018.05.003

  5. Bloom, E., Nyman, E., Must, A., Pehrson, C., Larsson,  L. (2009).  Mycotoxins produced by molds in water-damaged indoor environments.  Journal of Occupational and Environmental Hygiene, 6(11), 671–678. http://dx.doi.org/10.1080/15459620903252053

  6. Trichodermol (T3D3717). (n.d.). Retrieved from http://www.t3db.ca/toxins/T3D3717

  7. Verrucarol (T3D3723). (n.d.). Retrieved from http://www.t3db.ca/toxins/T3D3723

  8. Vieira, T., Cunha, S., Casal, S. (2015). 25.3.3 Sterigmatocystin. In V.R. Preedy (Ed.), Coffee in Health and Disease Prevention (pp. 225-233). Elsevier Inc.

  9. Islam, Z., Harkema, J.R., Pestka, J.J. (2006). Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environmental Health Perspectives, 114(7), 1099-1107. https://doi.org/10.1289/ehp.8854

  10. Gliotoxin. (n.d.). Retrieved from https://healthmatters.io/understand-blood-test-results/gliotoxin

  11. Ferk, F., Speer, K., Mišík, M., Nersesyan, A., Knasmüller, S. (2015). Chapter 66 - Protective Effects of Coffee Against Induction of DNA Damage and Cancer by Aflatoxin B1. In V.R. Preedy (Ed.), Coffee in Health and Disease Prevention (pp. 587-596). Elsevier Inc.

  12. Korpi, A., Järnberg, J., Pasanen, A-L. (2009).  Microbial volatile organic compounds.  Critical Reviews in Toxicology, 39(2), 39-193. https://doi.org/10.1080/10408440802291497 

  13. Kreja, L., Seidel,  H-J. (2002). Evaluation of the genotoxic potential of some microbial volatile organic compounds (MVOC) with the comet assay, the micronucleus assay and the HPRT gene mutation assay.  Mutation Research, 513(1-2), pp. 143-150.  https://doi.org/10.1016/s1383-5718(01)00306-0

  14. Inamdar, A.A., Masurekar, P., Bennett, J.W. (2010).  Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicological Sciences, 117, pp. 418–426. https://doi.org/10.1093/toxsci/kfq222

  15. Inamdar, A.A., Hossain, M.M., Bernstein, A.I., Miller, G.W., Richardson, J.R.,  Bennett, J.W. (2013). The fungal derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proceedings of the National Academy of Sciences USA, 110, 19561–19566. https://doi.org/10.1073/pnas.1318830110

  16. Inamdar, A.A., Moore, J.C., Cohen, R.I., Bennett, J.W. (2012).  A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-o1 in human embryonic stem cells. Mycopathologia, 173, 13–20.  https://doi.org/10.1007/s11046-011-9457-z

  17. Morse, R., Acker, D. (22 February 2017). Indoor Air Quality And Mold Prevention Of The Building Envelope. Retrieved from https://www.wbdg.org/resources/indoor-air-quality-and-mold-prevention-building-envelope

  18.  Bennett, J.W., Inamdar, A.A., (2015). Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins? Toxins (Basel), 7(9), 3785–3804. https://doi.org/10.3390%2Ftoxins7093785

  19.  A.Graniti (1972). “The evolution of the toxic concept in plant pathology.” In: Wood R.K., Ballio A., Graniti A., editors. Phytotoxins in Plant Diseases (pp. 1–18). Academic Press.

  20. Brasel, T. L., Douglas, D. R., Wilson, S. C., Straus, D. C. (2005).  Detection of Airborne Stachybotrys chartarum Macrocyclic Trichothecene Mycotoxins on Particulates Smaller than Conidia.  Applied and Environmental Microbiology. 71(1),  114–122.  https://doi.org/10.1128%2FAEM.71.1.114-122.2005

  21. Sorenson, W. G., Frazer, D.G., Jarvis, B.B., Simpson, J., Robinson,  V.A. (1987). Trichothecene Mycotoxins in Aerosolized Conidia of Stachybotrys atra. Applied and Environmental Microbiology, 53(6), 1370-1375. https://doi.org/10.1128%2Faem.53.6.1370-1375.1987

  22. Milburn, D. Case Studies, Mold Focus_Part 1. (n.d.) Retrieved from https://docs.google.com/presentation/d/1RSgZYhSq0M_-fzlPUP1Q8z2btVuDi8so/edit#slide=id.p1

  23. Schurk, D. Houston Methodist Hospital Test Study Results Needle Point Bi-Polar Air Ionization for VOC Remediation. (n.d.). Retrieved from http://www.victordistcontrols.com/wp-content/uploads/2014/03/Methodist_Hospital_VOC_Remediation_Project_Test_Results_2014.pdf

  24. Electron Volt (eV) Potential Chart for Industrial Gases: UNDERSTANDING eV POTENTIAL PAPER. (n.d.). Retrieved from https://egeda.be/wp-content/uploads/2020/11/Electron-Volt-potential-chart.pdf

  25. Waddell, C. GPS Reports on Pathogen Testing,(n.d.) Retrieved from https://gpsair.com/uploads/customer-resources/Service-Logic/White-Paper-GPS-Reports-on-Pathogen-Testing-03-2020.pdf

Photo by Josh Eckstein on Unsplash

Is it ok to walk around barefoot in my home? I’m concerned about my feet absorbing mycotoxins.

Is it ok to walk around barefoot in my home?  I’m concerned about my feet absorbing mycotoxins.

Often we end up researching and writing articles in response to client questions, and this is one such article.  If your floors are warm or carpeted, it often feels good to walk around barefoot in the house.  However, this may or may not be a good idea, depending on what is on your floors.  Can toxins really go into or out of your feet?

“Foot detoxing” pads, baths and creams have been popular for a while.  Usually they show the pad or water turning brown with “toxins” after supposedly releasing them from your body through the feet.  However, there have been very few studies on their effectiveness.  In a small 2012 study, the researchers sampled water from before and after foot baths with the popular IonCleanse device, as well as hair and urine samples.  They found no evidence to suggest that ionic footbaths help promote the elimination of toxic elements from the body through the feet, urine, or hair.   So, it’s unlikely that these methods are able to pull toxins out of the body.

However, some molecules can be absorbed through the skin (particularly the feet) into the bloodstream.   You can even “taste” with your feet; if you apply garlic to the soles of your feet in a plastic bag ala this video, you can taste it in your mouth between 15 minutes to one hour later.  This is because small, light molecules like allicin (the chemical released in freshly-cut garlic) can penetrate the skin and the bloodstream, traveling throughout your body.  Dimethyl sulfoxide (DMSO) is a chemical that has similarities to allicin and is very easily absorbed through the skin.  Part of the DMSO is transformed to the volatile metabolite dimethyl sulfide, which gives a characteristic garlic- or oyster-like smell when excreted through the lungs.  (Adverse reactions of dimethyl sulfoxide in humans: a systematic review)  Therefore, we are susceptible to chemicals that behave in this way.  Scientists and drug-researchers are constantly in search of chemicals that can deliver drugs more easily to the bloodstream, and therefore new “carriers” are of great interest.  

What about mycotoxins that may happen to be on the floors?  Can we get mycotoxin poisoning from walking around barefoot?   Although there’s no direct answer via testing, research on individual mycotoxins shows that they can be absorbed through the skin, so it’s reasonable to assume that they can be absorbed through the skin of the soles of the feet.  Since mycotoxin concentration on surfaces is highly variable, however, it remains to be seen whether concentrations sufficient to cause illness are present on floors. 

We found that a 2014 paper summarizing previous research on the absorption of the most common mycotoxins through skin and their effects, was most helpful.   This research documented mostly animal trials to determine toxicity, but there are also reports of workers who were accidentally exposed to these toxins.   The actual methods of damage incurred by these toxins can be quite complex, so we will spare you the details, but many of them cause oxidative stress that stimulate the immune system, triggering inflammation and cell damage.  Here are some examples:

  • T-2 toxin, a member of the trichothecene mycotoxin family, is produced by various species of Fusarium fungus, which can infect corn, wheat, barley and rice crops in the field or during storage.  It’s infamous for allegedly being used as a bioweapon during the military conflicts in Laos (1975-81), Kampuchea (1979-81), and Afghanistan (1979-81) to produce lethal and nonlethal casualties. (CBRNE - T-2 Mycotoxins) T-2 toxin causes oxidative stress, which releases cytokines (proteins that help control inflammation in the body) that are thought to cause the death of the outer layer of skin cells (keratinocyte apoptosis).   T-2 mycotoxicosis can cause nausea, vomiting, diarrhea, leukopenia, hemorrhaging, skin inflammation, and in severe cases, death. (T-2 Mycotoxicosis)  The reported LD50 (amount which causes death in 50% of exposures) of T-2 toxin is approximately 1 mg/kg of body weight. (Medical Aspects of Chemical and Biological Warfare)
  • Citrinin (CTN) is a product of several fungal species belonging to the genera Penicillium, Aspergillus and Monascus. To summarize, CTN under in vivo conditions has the ability to cause oxidative stress and ROS-mediated DNA damage in mouse skin upon topical exposure, leading to skin death.
  • Patulin (PAT) is a toxic chemical naturally produced by several species of mold, especially within Aspergillus, Penicillium and Byssochlamys.  A single topical application of PAT to mouse skin generates ROS, which causes DNA damage in skin cells.  In small doses it causes death of the cells, but in larger doses it initiates tumor growth.
  • Aflatoxins are products of  several types of Aspergillus molds, with AFB1 known as the  most potent teratogen (causing malformation of embryos), mutagen and hepatocarcinogen (causes liver cancer) of all aflatoxins. Like in the case of PAT, AFB1 may also cause skin tumors in mouse skin after long-term and higher-dose application.
  • Ochratoxin A (OTA) is a fungal metabolite produced by Aspergillus ochraceus and Penicillium verrucosum. OTA is found in a variety of plant food products such as cereals. To summarize, a single topical exposure of OTA at the dose level of 20–80 μg/mouse (20-80 millionths of a gram, with a mouse weight of 40-45 grams, translates to 0.5-2.0 ppm) induces the production of ROS, resulting in the skin cell death. On the other hand, a single topical exposure of OTA at a dose level of 100 nmol/mouse causes significant enhancement of short-term markers of skin tumor promotion in mouse skin.

As you can see, the least effect of these mycotoxins is to cause skin cell death, but the worst effects are whole-body!  They are effectively absorbed through the skin.  However, is it reasonable to assume that they would be found on your floors, in a sufficient quantity to cause illness?  

A 2012 study of a family that started to experience illness shortly after moving to a home in Hawaii in 2008 indicates that mycotoxin levels in the low parts-per-billion range on various surfaces in the home (including a sandal and a bath towel), as well as elevated fungal counts, can cause systemic illness.  The father and mother, aged 40 and 39, had an 8 year old daughter, a 5 year old son and a pet dog, living in a 2-story home with a crawlspace that had water intrusion.  According to one of the two inspection companies hired to investigate the home for mold, “A serious moisture/mold problem is observed in the crawlspace directly below the bedrooms. Moisture is penetrating the walls of the foundation. The HVAC system is designed to force air into the crawl space, forcing crawl space air into the bedrooms and other areas above. Moisture intrusion also results from the master shower into the crawl space as well as from sprinklers, damp soil against the foundation, lack of roof gutters, and poor grading.” Similar findings were in the second report, plus: “Smoke testing revealed communication between the crawl space and upper level bedrooms via electrical outlets and electrical ducts and plumbing. The conduit holes were not sealed, permitting observance of light coming through spaces in the floor joists. A musty odor was present in the master bathroom and noted to get stronger when the fan coil was turned on.”  ERMI tests for mold indicated ERMI levels of 2 to 3 throughout the home, which “represent a moderately high index, and further investigation should be conducted to establish if your home has a mold contamination problem”.  (Interpreting ERMI test results) Here are the test results for mycotoxins; mycotoxins can be measured from air or dust samples and in this case the dust was analyzed:

All four of the family members and the dog tested positive for OTA and some for tricothecenes in their urine; they had health problems involving the upper and lower respiratory tract, headaches, neurocognitive deficits, and severe sinusitis. They had chronic sinusitis and nasal inflammation, and the isolation of bacteria (Pseudomonas and Acinetobacter) and molds (Penicillium and Aspergillus) from nasal secretions from the father and daughter is consistent with other cause and effect symptoms of mold exposure.  Even the dog suffered from 72 lesions, an ear mass and lipomas (which were surgically removed), in were found OTA and tricothecenes.  The mother gave birth to a daughter 3 months after moving out of the home, which had skin inflammation and discolorations because of being exposed to mycotoxins in the womb and via breastmilk.  

Therefore, we can conclude from this sad scenario that mold, bacteria and mycotoxins are a real concern in house dust when the home has water intrusion and mold issues.  There’s no way to know how much of the mycotoxins were inhaled versus absorbed through their skin, but of course young children are closer to the floor, often crawling and sitting on it, thus sitting in dust, stirring up dust, and breathing it in.  The dog obviously suffered from laying on the floor!  

According to IndoorScience, a reputable indoor air-quality testing company, 

  • there are no guidelines for “acceptable” amounts of mycotoxins in house dust, 

  • mycotoxin testing is much more expensive than standard mold testing, and 

  • there are only a few labs that perform mycotoxin testing.   

However, if you have water intrusion or mold problems in your home that you suspect are causing health problems, mycotoxins or toxins from actinobacteria (see our article here) could very well be the culprit.  In these cases, solving the water intrusion problem and remediation and thorough cleaning will also remove the mycotoxins and bacterial toxins!  Here are some tips for maintaining a cleaner home from our related article

  • Invest in a HEPA air cleaner to remove dust from the air

  • Clean floors regularly with a HEPA vacuum and mopping (some appliances do both)

  • Filter the air that comes into your home via window filters

  • Change your HVAC filter regularly and even upgrade it if possible

  • Try to remove your outdoor shoes at the door, and wear indoor shoes or slippers only in the home

  • Minimize clutter, upholstery and carpets that can hold dust. 

These are also common recommendations of doctors and practitioners who see mold illness in their patients, because removing them from surfaces is helpful whether the toxins are inhaled or absorbed.  If you suspect water intrusion anywhere in your home (even in places you can’t see, like the crawlspace or attic),  of course you’ll need to address remediation in the moldy area pronto.  However, since you don’t know how air currents may be carrying dust and toxins into the living space, it’s a safe bet to also step up the cleaning and keep your shoes on!

Photo by Jimmy Chang on Unsplash

Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners

Breaking down Mycotoxins and mVOCs with Enzymes and Non-Toxic Cleaners

If you haven’t read our white paper on mold, mycotoxins and mVOCs, you should!  While discussing the meanings of these scientific terms with our team, we thought it would be even more helpful to break it down to the vernacular.  Mold is like most other living organisms that excrete waste products.  Mycotoxins are not similar to excrement, in that they are not secreted because of normal growth, development or reproduction of the mold (they are secondary, not primary metabolites).  They are chemicals secreted in offense and defense, and in stressful situations.  Thus, mycotoxins are like sweat–the toxic sweat of mold (yuck!).  They can be sent aloft into the air on mold spores (which are also released whenever the mold is stressed or physically agitated), or even smaller fragments of mold and dust, which are all easily breathed in.  

Microbial Volatile Organic Compou0nds (mVOCs) are gasses as a product of growth, development or reproduction (some are primary metabolites), and as a signal to other microbes around them (secondary metabolites).  This means that mold uses mVOCs to communicate and affect the behavior of other molds around it, even as a competitive tool to directly exert antimicrobial activity (suppressing or eliminating potential enemies). (Volatile affairs in microbial interactions)  As such, mVOCs are akin to body odor–the toxic body odor of mold, which it uses to intimidate other mold!   Although they are meant to signal other microbes, even humans can recognize the smell of some mVOCs in that musty, earthy smell that is a tell-tale sign of mold.

It has been shown that the mycotoxins can be eliminated by various physical means such as thermolysis (destruction by intense heat), radiation treatment and low-temperature plasma (bipolar ionization).  They can also be destroyed by chemical methods such as oxidation (removal of electrons), reduction (addition of electrons), hydrolysis (breakdown by reaction with water), alcoholysis (breakdown by reaction with alcohol), absorption and adsorption, and biological methods by using living things like bacteria or other molds. (Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action)  Only two  of these methods are permitted to mitigate mycotoxins in foods, however, contamination of raw materials with chemicals and/or products of side reactions limit their use.

Alternatively, using enzymes to detoxify mycotoxins mostly avoids these problems.  First of all, what is an enzyme?   Enzymes are proteins produced by living organisms that act as catalysts in chemical reactions.  Enzymes can either build up or break down.  For our purposes, cleaning enzymes facilitate breaking down microbes and their byproducts that cause sickness, stinkiness or stains.  

Scientists have been exploring making artificial enzymes since the 1990’s, and many of these are mimicking enzymes found in nature.  Here are the most common types of natural enzymes (from Simple Science: How in the World do Enzymes Clean?):

  • Proteases break down protein-based soils including blood, urine, food, feces, wine and other beverages.
  • Lipases break down fat molecules like oils and grease.
  • Amylases break down starch molecules like eggs, sugars, sauces, ice cream, gravy.
  • Cellulases are used to soften fabric and restore color to fibers made up of cellulose material. They also remove particulate soil and reduce fabric graying and pilling.

Various enzymes can also be combined to treat the combinations of mycotoxins that are produced by some molds.  For example, cytochromes are enzymes that include a number of compounds consisting of an iron-containing molecule bonded to a protein (cancer.gov).  Cytochromes are usually used within mammals as detoxifying agents of multiple toxic compounds, including mycotoxins.  Cytochromes in the human liver are able to convert aflatoxin B1 (a cancer-causing mycotoxin) into Aflatoxin M1, which is 10 times weaker in carcinogenic potency.  In turn, glutathione s-transferase, another enzyme in our bodies, leads to the excretion of aflatoxins from the body (2016 study).   

Since the enzyme-based approach for degrading mycotoxins in homes is new, there aren’t that many commercial products on the market.  In fact, Green Home Solutions claimed in 2022 that it was the “is the only professional remediation company that combines the ANSI/IICRC standards for mold remediation with a state of the art proprietary disinfectant/ fungicide that not only kills bacteria and molds, but continues to work by breaking down the allergenic protein structures into harmless amino acids.”  It is only available for professional use, but their product description shows that several enzymes are combined for maximum effect on the broad range of mycotoxins that may be found in a home:

  • AMYLASE is an enzyme that digests the mold’s outer membrane or cell wall. It dissolves and causes the insides to leak out.
  • LIPASE is another enzyme in our product formula which attacks and breaks down the fatty lipids inside of and in between the mold membranes.
  • PROTEASE breaks down allergenic proteins at the mold’s core or nucleus, eliminating them from the air you are breathing.

Since we revealed the real nature of mycotoxins and mVOCs (they’re like toxic sweat and body odor), we thought you might like some real solutions you can use to get rid of these toxins in your home!   Elimination of the mold colony is first and foremost, so it’s best to contact an inspector if you can’t find or handle the problem yourself.  Getting rid of the bulk of mold will remove much of the mycotoxins and mVOCs, but mycotoxins can still be present in dust (they are very hardy and indestructible by heat), and mVOCs may be present in absorbent furnishings.  Here are some products and techniques that can rid your home of the remainder of these toxins.

  • EC3 Enzyme Cleaner Concentratie is a non-toxic solution also trusted by many mold remediation companies and mold awareness sites, such as moldfreeliving.com.  It is an enzyme solution with citrus and essential oils that is safe for food-prep surfaces, can also be used in the laundry and many surfaces around the home, even as a degreaser. It was proven effective for mold spores and mycotoxins by a 3rd-party, CAP-accredited lab.   

  • MycotoxinKlear is recommended for all mold and mycotoxin products in use of a fogger or electrostatic sprayer.  

  • The enzyme-based approach for degrading mycotoxins in homes is not common on the commercial scale.  However, some mold remediation companies use them with great results.  The Mold Pros use SurfaceGuard, which was shown in a 2019 study analyzed by RealTime Labs to break down ochratoxin, aflatoxin and gliatoxin to undetectable levels.  Unfortunately SurfaceGuard is only available to commercial remediation companies.

  • Most MVOCs can be mitigated with activated carbon filters, because they are in a gas form and can flow through and be adsorbed by the carbon molecules.  You can try our Germ Defender with carbon filters, or purchase carbon filters for your standalone HEPA unit.  Mycotoxins, however, will not be affected by carbon filters because mycotoxins are attached to spores, fragments of spores, and dust, which are not captured by carbon filters.

If you can’t remove all of the mold, the next best thing may be encapsulation.  Encapsulation is a controversial method in that it does not physically remove the mold but surrounds it with a protective layer that does not allow it to release spores or mycotoxins into the environment anymore.  If encapsulation is done properly, though, it can be a safe method that allows homeowners to save wet drywall and wood that have not dried out completely, by sealing any mold that is present and not allowing more to grow.  As demonstrated by EarthPaints, encapsulation either needs to be applied to completely dry substrates, or with a solution that allows the substrate to completely dry over time.  Their Lime Prime paint is a non flammable mineral shield that saturates wood fiber cells and pozzolanically reacts with concrete and gypsum. Encapsulated Substrates dry out properly and in 30-60 days are ready for follow up after a flood. (earthpaint.net)  The problem with mold encapsulation is that it must completely coat surfaces in a space with a durable non-toxic product, and of course the space must be clean and dehumidified, or the mold will “break through” and continue growing as dust and moisture allow it to propagate.  For more information on whether encapsulation is right for a space in your home, this article by a building biologist is very helpful.

Once again, we also find that bi-polar ionization (used in the Germ Defender, Air Angel and Whole-Home Purifier) should be effective against mycotoxins in the home.  Because bipolar ionization sends out positive and negative ions that cause small particles to clump together and fall out of the air, this reduction in particles means a reduction in mycotoxins, since mycotoxins ride on spores and fragments of mold.  More testing is needed in residential and commercial settings to confirm this, however, our case studies using bipolar ionization to reduce mold spore counts without any additional filters, are quite extraordinary!

Photo by Anne Nygård on Unsplash

If you are skeptical about the effects of mold in homes, please stop and read this.

If you are skeptical about the effects of mold in homes, please stop and read this.

Mold is a fungus that has thousands of species and grows outdoors and indoors, year-round; every building has some level of mold in it. (Molds in the Environment, Johns Hopkins Medicine)  It spreads by microscopic spores which are carried in the air, on clothing, shoes and pets to lodge and potentially multiply indoors. (Basic Facts about Mold and Dampness, CDC) Since the spores are too small to see, many people doubt that mold in the home or workplace can actually cause illness.  Is all mold really bad, or are only some molds bad?  Why do some people become ill while staying a short time in a space while others seem to be unaffected?  What levels of mold should cause concern and what tests are best?   These are very common questions and we would like to highlight some scientific research about mold to understand the answers to these questions.  

Because edible mushrooms and molds growing on basement walls are all classified as fungus, with more adverse reactions arising from handling some than others, there are obviously harmless and harmful species in the family.  It’s overgrowth of the harmful types that can lead to problems in buildings. In the right environment they quickly grow from microscopic spores to visible mycelium (colonies), to sending out more spores into the air and starting other colonies.. 

In general, molds need the following to grow (What You Need to Know About Mold):

  • Moisture: even moisture from the air, when it is above 80% humidity, can be enough to sustain mold.
  • Warmer temperatures: most molds cannot grow below 40 deg F, which is why refrigerators are kept at 39 deg F and below. 40 -100 deg F sustains mold.
  • Organic (carbon-based) materials to digest.  Mold can even grow on glass, metal and other inhospitable environments, if it has dirt or synthetic material to feed on.
  • Protection (shade) from UV rays: ultraviolet light kills most mold, so you won’t see it growing in direct sunlight!
  • Oxygen: mold needs very little oxygen to survive, so it’s difficult to control mold by depriving it of oxygen.

Therefore, warm, moist areas with natural materials like wood, paper or fabric are great at growing mold, and mold can take root in these areas in as little as 48 hours.  Eliminating the most important material (water) quickly will stop mold in its tracks and not allow it to proliferate.

Molds can emit several types of toxins: mycotoxins and microbial volatile organic compounds (mVOCs). Mycotoxins are solid or liquid.  Of the several hundred mycotoxins identified so far, about a dozen have gained the most attention due to their severe effects on human health and their occurrences in food. (Mycotoxins, WHO). Mycotoxins have also been frequently detected in house-dust over the past decades, and they can be carried through the air on dust, spores or other fragments of mold.  (Detection of Mycotoxins in Highly Matrix-Loaded House-Dust Samples)  By contrast, MVOCs are gaseous, so they are already airborne.  Both mycotoxins and mVOCs can be emitted when the mold colony is disturbed or threatened, by humans, animals or by other microbes.

Ancient plagues and epidemics among animals and humans were likely the result of mycotoxins in foods. Here are some examples: 

  • In 1960, about 100,000 young turkeys died in the UK, and scientists discovered that aflatoxins produced by the common molds Aspergillus flavus and A. parasiticus in their feed led to the deaths.  (Mycotoxin: Its Impact on Gut Health and Microbiota)  
  • Aflatoxin can also cause liver cancer in humans.  
  • Ingestion of ergot, which is a fungal disease of rye and other grains in which black elongated fruiting bodies grow in the ears of the head of grain, can result in ergotism, a painful and often deadly disease.  Ergotism has even been implicated in premeditated poisonings and witch trials, due to its psychoactive effects and disturbances. (Ergot: from witchcraft to biotechnology)
  • Sadly, since the isolation of T-2 mycotoxin (a member of the trichothecene mycotoxins, which is emitted from several types of mold including Stachybotrys chartarum), T-2 mycotoxin has been allegedly used as a bioweapon during the military conflicts in Laos (1975-81), Kampuchea (1979-81), and Afghanistan (1979-81) to produce lethal and nonlethal casualties. (CBRNE - T-2 Mycotoxins)  

Illness by ingestion of mycotoxins from a food source occurs more frequently than by inhalation of mycotoxins (for example in dust from mold growing on or behind walls); so with the exception of bioweapons, inhalation of mycotoxins is of a lower concentration so that respiratory irritation is the usual effect.  

MVOCs, being gaseous, are highly inhalable, and their effects can range from annoyance (of the musty smell) to coughing, wheezing, fatigue, headaches, dyspnea, allergies, eczema, as well as serious respiratory issues (Sick Building Syndrome, Mølhave, L. "Encyclopedia of Environmental Health." 663-669.)

So why does mold affect some individuals more than others?  For a long time, individuals who became ill upon entering or spending time in a building were deemed to have more psychological issues than actual physical issues, because testing of the building often revealed no measurable toxins.  There are several reasons for this: 

  • First, methods of testing for toxins were not sensitive or specific enough to find the cause.  Dr. Ritchie Shoemaker, a well-known researcher and doctor in the area of mold, Chronic Inflammatory Response Syndrome (CIRS) and Water-Damaged Buildings (WDB), addressed this problem when discussing testing methods in his 2021 paper.  Air sampling methods are not adequate to pick up smaller spores, they may also miss spores outside the air flow boundary and duration of the test, and some spores (like Stachybotrys, commonly called Black Mold even though many other molds are black in appearance) are heavy and don’t become airborne in large numbers, especially if the mold colony is hidden inside a wall. 
  • Some bacteria and molds in WDB produce mVOCs, which are toxins not detected by spore air tests.  Only tests that capture mVOCs would be able to detect these. 
  • Some people are more sensitive to mold spores, mycotoxins, mVOCs and endotoxins than the general population.  They may be missing genes that allow their bodies to process the toxins, or their immune system may have been chronically overstimulated in a previous chemical or toxin exposure.  These predispositions make them much more sensitive to low levels of toxins from mold and bacteria.

Therefore, mold toxins are sometimes difficult to detect, and they don’t produce similar responses per concentration in everyone due to individual sensitivities. This phenomenon is addressed in a guidance paper to clinicians (doctors and other health practitioners) by the University of Connecticut Health Center.  The paper discusses 5 case studies of patients who were observed to have sick building syndrome due to mold issues in WDB. 

There are several reactions to exposure to mold discussed in the paper:

  1. Fungal infections: Infection usually requires direct contact with fungus, and only immuno- compromised or highly sensitive people are at-risk for fungal infections.
  2. Allergic and Hypersensitivity reactions: It is well established that fungi can cause allergic reactions in humans, and molds are typically included in the skin test panels used clinically by immunologists to screen for environmental triggers in atopic patients (those who are predisposed to immune responses). Many atopic patients experience allergic symptoms related to molds commonly encountered outdoors. The presence of mold spores in the indoor environment is not in itself a problem when the source is the normal interchange of outside air and the amount and types of spores inside are the same or less than outside. However, mold actively growing on an indoor substrate may affect the quality of the environment by degrading the surrounding materials (weakening the structure) and, more important, by potentially adding unhealthy chemicals and bioaerosols to the indoor air. Higher levels of mold spores inside than outside or the presence of different species inside than outside reflect this “amplification” of mold.  Antigens are toxins that produce antibodies, and in the case of mold, antigens could be spores or spore fragments, mycotoxins, or mVOCs.  “Individuals’ immune responses to these antigenic molecules are determined by their genetic makeup and environmental factors. Important among these factors are the frequency of exposure to the antigens and the intensity of the exposures…Development of sensitization to antigens generally requires repeat exposures, often to high ambient concentrations of the sensitizing material. Once sensitization to an antigen has developed, it requires a much lower concentration upon re-exposure to elicit the reactive phase that we recognize as the clinical manifestation of disease.  In general, the higher the exposure and the degree to which one has been sensitized, the more severe the allergic or immune-mediated response.”  

This is the pathway by which mold “allergies” progress to severe illness, and even death. All five of the cases discussed in the aforementioned paper necessitated the patients to be removed from the buildings (school, office, and home) to recover from their symptoms.  Unfortunately the death of a two-year-old boy in the UK in 2020 was the result of a severe respiratory condition due to prolonged exposure to mold (the family had reported mold in the apartment repeatedly up to three years prior, however, the housing authority did nothing to repair or mitigate it).  This highlights the need for parents to be knowledgeable about the effects of mold as advocates for their children. 

When should a house be tested for mold? We concur with this experienced mold inspector’s methodology:

  1. If you have no visible mold but high humidity, it’s probable that mold is starting to grow in the area.  Humidity is easy to feel even without sensors but to be sure, you can get 2 humidity sensors here for only $10.
  2. If you find visible mold growth, but don’t know the extent of the damage
  3. If you or someone in your family suffers from health symptoms related to mold exposure, then testing of the home would be appropriate.
  4. If you smell a musty odor, this is an indication that you have actively growing mold.  These odors are mVOCs.
  5. If you’ve already had remediation and need proof that it was performed effectively in order to move back in safely, hopefully a “before” or baseline test was performed for comparison.

What kind of tests are appropriate? 

DIY mold tests are abundant, however, in most cases you get what you pay for.  Petri dishes, while economical, do not provide the quantitative information (how much mold is in the air) and except in the case of sending the dishes in for lab analysis, do not give qualitative information about the types of species. 

If you have only a moderate budget and don’t know where the mold may be coming from, we believe non-viable air sampling can give a lot of information about the spaces in your home.  GotMold? Is an easy way to take these samples in different rooms and get them analyzed by an accredited laboratory. They include an outside sample cassette so that your inside rooms can be referenced against it.  The lowest level of indoor spores should be comparable to an outdoor sample, because mold is in the air everywhere.

If you do have an idea of where the mold is originating, adding a tape-lift, swab or bulk (air filter) sample to your tests can help confirm if a moldy-looking area is indeed mold.  

If, however, an area of your home recently flooded, or you’re experiencing new or worsening health problems, we would recommend requesting a visit from a professional, experienced mold inspector who will not only take samples: they should first of all look at the moisture problems in the home which could generate the mold.  They will also be able to distinguish which type of test is appropriate, and if mold is discovered, whether it’s active mold growth that could be causing illness or inactive mold that’s been dried out and contained behind walls for years.   There is a big difference in renovation scope and cost for active mold and inactive mold!   We understand the health impacts of critically-contaminated spaces on one end of the spectrum, but since many leaks and humidity problems can be corrected in a local, economical way, it’s often not necessary to “gut” a home to remediate it well.  

Beware if the inspector only wants to do ERMI testing.  ERMI stands for Environmental Relative Moldiness Index and was developed by the EPA for research purposes only.  Despite its popularity among many mold inspectors and a number of mail-order labs such as EnviroBiomics and Mycometrics, ERMI has a number of drawbacks that can cause it to miss major mold problems, or overstate minor ones.  

In the end, just as a leak in your outdoor shed can make a stinky, decaying mess, mold can do the same indoors–and it may or may not affect your family’s health, depending on their genetic makeup and previous experiences with mold, chemicals and toxins.   However, we do hope that you will take any water intrusion or humidity problem seriously, because it has the potential to do serious harm.  

Photo by Pawel Czerwinski on Unsplash

Can burning a candle really reduce the mold spore count in my home?

Can burning a candle really reduce the mold spore count in my home?

Candles are a super-popular home decor item, and they add to the ambiance of a home through their appearance and smell, making it cozy or sophisticated or elegant with the “snap” of a match or lighter.  Unfortunately, the VOCs and particulates aerosolized by most candles make them more of a health detriment than a plus.  Burning a candle against mold, however, is a new concept, and like so many other products, the benefits all depend on WHICH candle you’re burning!   

Several companies have formulated candles that actually reduce mold spore counts in the air while the candles burn.  Like the Bipolar Ionization technology, where ions are sent out into the air instead of using a “filter” to grab all pollutants, the flame of the candle is not the main part that kills mold spores.  For the EC3 Air Purification Candle by MicroBalance Health Products ($43 for 3), the flame melts the non-toxic soy wax and releases a proprietary natural blend of citrus seed extracts, that includes Grapefruit Seed Extract (GSE). (per the manufacturer’s answer to client question here).  The product is all natural and uses no petrol-chemicals, unlike traditional paraffin candles.  

In studies, GSE has been proven to be incredibly bactericidal even at minute dilutions: at 1:512 parts water to GSE, the extract kills gram negative and gram positive bacteria, yet is non-toxic to human cells. (The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity)

However, other studies are not so positive.  In this 1999 study, 6 commercial GSE formulations were tested and 5 of the 6 were very effective against 7 germs, including 1 yeast.  It turns out that these 5 GSEs also had traces of the synthetic antiseptic agent benzethonium chloride (a quat), while the 1 remaining GSE that contained no preservative, did not effectively eliminate the germs.  The study concluded “Thus, it is concluded that the potent as well as nearly universal antimicrobial activity being attributed to grapefruit seed extract is merely due to the synthetic preservative agents contained within. “  The American Botanical Council (proclaiming to be “your source for reliable herbal medicine information”) also confirmed, “A significant amount, and possibly a majority, of ingredients, dietary supplements and/or cosmetics labeled as or containing grapefruit seed extract (GFSE) is adulterated, and any observed antimicrobial activity is due to synthetic additives, not the grapefruit seed extract itself. “

Digging into studies on GSE against fungus found that these were mainly in liquid form.   This one showed it was effective against different types of fungus that affect asparagus plants, when used in conjunction with clove, Dahlia and Chrysanthemum extracts.   This study pitted GSE against candida (yeast) strains that tended to form a biofilm on denture resins, and it did very well.  Another study of GSE showed that it eliminated 3 Candida species that commonly infected patients with dentures.   This is great news for sufferers of oral candidiasis, but does aerosolizing citrus seed oil extracts (including GSE) work the same way?  

Although it’s not clear how citrus seed extract vapors attack mycotoxins, we did find that the EC3 candle was tested by RealTime Labs in 2012, with excellent results.  According to the letter from the lab (copied from this mold expert’s website), “Results showed that within 3 hrs of exposing the EC3 candle to known concentrations of mycotoxins, no mycotoxins were detected, if known levels of any mycotoxins were 250 ppb or below.  Concentrations of 500 to 1000 ppb were decreased by 90% in 3 hours…Given the experimental situation created in our laboratory, the EC3 candle will eliminate aflatoxins, ochratoxins, and trichothecenes at concentrations of 250 ppb or less and will reduce these toxins by 90% in 3 hrs at concentrations of 500 to 1000 ppb.”

Given that mycotoxins are hard to destroy (most are highly resistant to heat and antimicrobials), this is very good news.  MicroBalance Health Products, the maker of these candles, is an established company (founded in 2009) whose products are based on the work of Dr. Donald Dennis, a practicing Ear, Nose and Throat (ENT) surgeon who discovered that mold was the culprit of many of his clients’ health issues.  The citrus extract blends he developed are also used in their body supplements (shown here in their free sinusitis wellness protocol), so it’s probable that the citrus seed extracts used in their products (not just the candle) are of great purity.  

Another company, CitriSafe, also uses citrus extract blends in their Remedy Maintenance Candle ($16 for 1 candle) and mold solution sprays, however I could not find any studies or testing data for them.  The research behind Citrisafe Remedy products and MicroBalance Health Products (as well as BioBalance) was developed by pharmacist Dr. Walter Hayhurst and JW Biava (founder and CEO of Immunolytics, a laboratory that tests for mold and mycotoxins) in the early 2000’s. (podcast with JW Biava), therefore it’s likely that the citrus extract blends in these products are very similar.

Both MicroBalance Health Products and Citrisafe recommend using their candles with a broader treatment plan for mold in your home, but if there’s a space you spend a lot of time but you have less control over, like your office or hotel room (if you travel a lot), the candles may help significantly to clean up the air in that space.  When it comes to mold, every little (non-toxic) bit of help is welcome!

What’s the difference between EMMA and ERMI?

What’s the difference between EMMA and ERMI?

Maybe EMMA and ERMI sound like children’s story characters, but no, we’re talking about mold testing!   RealTime Laboratories was founded in Texas in 2005 by two doctors who had been researching and collaborating since their meeting in medical school.  Dr. Bolton is a board-certified anesthesiologist and was a doctor with the U.S. Navy for 12 years, as well as practicing privately and with the U.S. Department of Veterans’ Affairs.  He investigated the circumstances of his friend’s mother’s sudden death, whose heart stopped although she was in relatively good health.  The woman’s house was full of mold.  Dr. Bolton’s wife also suffered from sinus and ear problems, most likely from the gym where she worked out (nadallas.com) At RealTime Laboratories, Dr. Bolton and Dr. Hooper developed proprietary testing for the 16 most common, dangerous mycotoxins in patients’ bodies, homes and pets, so that they could recover their homes and lives from these poisons.  EMMA (Environmental Mold and Mycotoxin Assessment) is one of these tests, and it tests for 10 of the most toxigenic molds (including “Black Mold” or Stachybotrys) as well as the presence of 16 of the most dangerous mycotoxins produced by those 10 molds, using provided swab and gauze or a sample of your HVAC filter. (realtimelab.com)

In contrast, ERMI (Environmental Readiness Moldiness Test) was developed by the EPA as a research tool, to investigate the relative moldiness of a home.  ERMI uses the analysis of settled dust in homes and buildings to determine the concentrations of the DNA of the different species of molds.  (survivingmold.com)  In other words, ERMI gives a sense of the concentration of various molds, but does not test for the poisonous mycotoxins they emit. ERMI was developed as a research tool only, and although ERMI testing is widely available by independent labs, it has not been validated for routine public use in homes, schools or other buildings.  It was criticized by the EPA’s own Office of Inpector General in a report titled, “Public May Be Making Indoor Mold Cleanup Decisions Based on EPA Tool Developed Only for Research Applications.”  Some of the shortfalls of ERMI collection practices and analysis are listed in this report

Here is a summary of the differences between EMMA and ERMI (source: presentation by Dr. Matt Pratt-Hyatt):

Realtime Laboratories is certified under Clinical Laboratory Improvement Amendments of 1988 (CLIA) and College of American Pathologists (CAP) to perform EMMA testing, which most importantly focuses on the molds AND the mycotoxins they produce.  The company has produced a table of which mycotoxins are associated with which mold, and the symptoms and illnesses caused by them.  Here is a portion of the table:

Mycotoxin testing in the body is what may be foremost to patients.  This lab offers urine sample testing of those same 16 mycotoxins using ELISA-based testing, which stands for enzyme-linked immunoassay. It is a commonly used laboratory test to detect antibodies in the blood. (medlineplus.gov).  (Inclusive in the mycotoxin test, RealTime Labs was granted a patent for its macrocyclic trichothecene test (tricothecenes can be produced by the molds Fusarium, Stachybotrys, Tricothecium and Myrothecium)).  Also, RealTime Labs offers a MycoDART-PCR test of the blood (must be ordered by a doctor) to determine if the patient has been colonized by mold.  According to Dr. Matt Pratt-Hyatt, 1 in 3 mold illness patients is colonized with mold.   If detectable levels of mycotoxins are found:

  • In the body: the patient can choose to start treatment with a doctor in their area (list on the website).  Treatment and monitoring continues until mycotoxins are below detectable limits in the tests.  

  • In the home: the patient can contact environmental remediation services to pinpoint the source (the test does not pinpoint the source) and remove mold from their home.  

Recovery from mold exposure and mold illness really needs to have this dual approach, because if the patient is treated without remediation of the home, then continued exposure will not allow recovery!  Remediation of the home is great, but it could take much longer for the patient to recover if their natural defenses, like glutathione, remain depleted.  Want to know whether you or your home have been “sickened” by mold?  Get tested! 

Photo by Sandy Millar on Unsplash