Tag Archives for " illness "

What are Endotoxins and Exotoxins and where do they come from?

What are Endotoxins and Exotoxins and where do they come from?

The word “toxin” causes my ears and eyes to perk up, because these are the types of substances that cause illness and even death.  Thankfully, it is increasingly possible to avoid toxins by understanding where they live and how they’re spread.   Science is advancing very rapidly to show us how to manage our environments, food, lifestyle and even our bodies to live more healthfully.   Endotoxins come from Gram-negative bacteria, and Exotoxins can come from either Gram-positive or -negative bacteria so we’ll start with what the “Gram” test means. 

Bacteria can be classed into two different groups: “Gram-negative” or “Gram-positive”.  These classes are based on a test developed by scientist Chritian Gram in 1884, which differentiates the bacteria using a purple stain.   According to webmd.com, bacteria either have a hard, outer shell, or a thick, mesh-like membrane called peptidoglycan.  The hard outer shell will resist the purple stain, and show up as a red color.  These are called “gram negative” because the purple stain did not show.  Bacteria with the peptidoglycan absorb the purple stain much more easily and are called “gram positive”.  The stain also tells more characteristics about the bacteria and the way it interacts with treatment. 

The peptidoglycan layer of Gram-negative bacteria is much thinner than that of gram-positive bacilli; instead Gram-negative have a hard, protective outer shell, making them harder to kill because of their harder cell wall.  When their cell wall is disturbed, or the bacteria are dead or dying, gram-negative bacteria release endotoxins that can make symptoms of illness worse.  In contrast, exotoxins are produced inside the bacteria and may be released while the bacteria cell is living, or during its death.

Here is a diagram that shows how the exo- and endo-toxins are released (source: microbiologyinfo.com).  (I distinguish them by remembering that endotoxins are only emitted at the “end” of life of the bacteria):

Here are some examples of gram-negative bacteria diseases (webmd.com):

  • Vibrio cholerae (Cholera, a serious intestinal infection)
  • E. coli (E. Coli infection)
  • Yersinia pestis (Plague, an infection of the lymph nodes and lungs)
  •  Bartonella henselae (Cat-scratch disease)
  • H. Pylori (gastritis, peptic ulcer disease, gastric lymphoma, and gastric cancer)
  • Campylobacter (campylobacteriosis, an infection that usually affects the digestive tract)
  • Legionella bacteria (Legionnaire's disease, a lung infection)
  • Salmonella (salmonellosis, a digestive infection caused by contaminated food)

Here are some Gram-positive bacteria (and the infections they cause): 

  • Staphylococcus aureus (MRSA, toxic shock)
  • Streptococcus group A (strep throat, toxic shock)
  • Clostridium botulinum (botulism)
  • Bacillus anthracis (Anthrax) 

As you can see, endotoxins and exotoxins are a serious matter!  Here are some of the other important differences between them (byjus.com):

Endotoxins

Exotoxins

Are released during death, mechanical damage and lysis of bacteria but also during bacterial growth and division. (bmglabtech.com)

Secreted as part of the cell’s metabolism

Does not have any enzymatic activities

Most activities are enzymatic in nature

Immune response is weaker

Immune response is stronger

Made of lipopolysaccharides

Made of proteins

Moderately toxic

Highly toxic

Cannot be made into toxoids

Can be made into toxoids

Highly resistant to heat

Can be killed by boiling

(A toxoid is a chemically modified toxin from a pathogenic microorganism, which is no longer toxic but is still antigenic and can be used as a vaccine (Oxford languages).)

There is so much to study about bacteria, however since we at HypoAir mainly focus on air quality, we’ll try to limit this post to the toxins that can be transmitted through the air.  

Endotoxins (source: buildequinox.com, manufacturer of the CERV Energy Recovery Ventilator in Urbana, Illinois):

  • Are pyrogens, that is, they often cause a pyrogenic reaction (fever).
  • Cause fatigue, a common characteristic of sick building syndrome. 
  • Don’t produce immunity, but only a temporary resistance known as “Monday fever”. Workers in industries with significant endotoxin levels have been found to be most afflicted on Monday, with reduced effects through the week. Endotoxin resistance is lost over the weekend, with the illness beginning anew the following Monday [5]
  • Are “adjuvant”, meaning that they can amplify the effects of other harmful substances. 
  • Are associated with sepsis, an extreme immune response by the body that often ends in death.  
  • The presence of pets in indoor spaces can represent an important source of air contamination and can be linked with the level of indoor endotoxins. The presence of dogs and cats can be the main predictors of endotoxin levels in house dust [1, 4-7]. Other predictors are the presence of vermin, such as mice, and infrequent cleaning, which indicates poor hygienic conditions in the home [1]. Storage of organic household waste indoors also increases bacterial contamination in the indoor environment [1]. (intechopen.com)

How can we reduce exposure to endotoxins?

  • Reduce Dust: According to EMLab, a commercial IAQ laboratory in North America, “ Endotoxin exposures are mainly through the air.”  “Endotoxins do not float freely, but instead are attracted to dust particles. Reduction of dust is essential for controlling endotoxin levels. Dust reduction requires both fresh air filtration and filtered air recirculation. Continuous, low flow fresh air ventilation systems without recirculation do not effectively manage indoor particulates. Endotoxin levels and dust levels are not strongly correlated indicating that they come from independent sources. A single dust particle in the 2 to 10 micron range has sufficient surface area to hold a million or more endotoxin molecules (approximately 0.1ng of endotoxin). Therefore, reduction of dust is important regardless of whether one lives in a dusty or relatively dust-free environment.” (this and following points from buildequinox.com).
  • Removal of food sources: “Coupled with proper ventilation is reduction of source generation of endotoxins. In the home environment, it is clear that kitchens are one source of endotoxin generation. Removal of food wastes and standing dishwater will reduce bacterial growth with subsequent production of endotoxins. Even a bowl of standing water will grow bacteria in a home. Bacteria and nutrients are ubiquitous indoors and outdoors, and they will land in water or moist regions where bacterial growth will occur.” Kitchens have the highest level of endotoxins, followed by living rooms and bedrooms.
  • Avoid use of misting humidifiers: “Cold temperature (misting) humidifiers are strongly linked to high endotoxin levels. Vaporizing humidifiers that heat water to boiling have not been found to produce high levels of endotoxins.” An alternative method for achieving sanitized, cold temperature humidification in a home is through plant transpiration. Plants can reduce toxins in homes [12]. The plant-root matrix releases sanitized water into the air (assuming proper plant care that does not form a wet mass promoting fungal and bacterial growth).

Exotoxins are (from textbookofbacteriology.net unless otherwise noted)

  • part of a defensive system of bacteria to avoid capture and killing by leucocytes (part of our body’s immune system). (sciencedirect.com)
  • Produced by both Gram-negative and Gram-positive bacteria 
  • More highly poisonous by mass than endotoxins, strychnine, or snake venom 
  • Can be “super-antigenic” or cause stimulation to the immune system 
  • are often encoded by mobile genetic elements, including bacteriophage (phage). Phage can transfer genetic information to the bacteria they infect. (study)
  • Can produce illness even when the microbes that produced them have been killed. (skybrary.aero)

What are the sources of exotoxins? (from intechopen.com)

  • Actinobacteria (especially Streptomycetes), Bacillus species and various other bacteria grow in moist building materials together with fungi. Elements from bacterial structures released in air include bacterial cells, bacterial spores, peptidoglycans, microbial volatile organic compounds, exotoxins, and other bacteria growing metabolites.
  • Gram-positive bacteria with exo- and endospores like Streptomyces and Bacillus can grow on moist building materials. Their spores are very resistant and can survive even if the air humidity is low.
  • Humans are an important source of indoor bacteria. The upmost layer of the normal human skin is continuously renewed, and skin scales containing bacteria are shed into the environment. Bacteria in the respiratory airways are eliminated through Pflügge droplets while talking, coughing, or sneezing. The level of air contamination is dependent on the number of persons inside a room and the efficiency of the ventilation system (natural or artificial ventilation). Bacteria that can be identified in indoor air are micrococci, staphylococci, streptococci, and corynebacteria.

How can we reduce exotoxin exposure?

  • Maintain your home so that there are no active leaks and humidity stays between 40-60%.  This will reduce actinobacteria that produce exotoxins.
  • Practice good hygiene by covering your mouth and nose while coughing or sneezing.  This reduces the amount of small particles in the air that can contain bacteria and exotoxins.  Dispose of tissues in the trash and wash hands with soap and water. 
  • According to the WHO, if exposure to the toxin via aerosol inhalation is suspected, additional exposure to the patient and others must be prevented. The patient's clothing must be removed and stored in plastic bags until it can be washed thoroughly with soap and water. The patient should shower and be decontaminated immediately. 
  • Most exotoxins can be destroyed by heating, (wikidoc.org), so eating thoroughly cooked food often eliminates the danger of ingesting the exotoxin. The WHO recommends these five strategies in food safety:
    • keep clean
    • separate raw and cooked
    • cook thoroughly
    • keep food at safe temperatures
    • use safe water and raw materials.

Use of a HEPA filter can reduce aerosols and fine particles containing bacteria, endotoxins and exotoxins, although some of the smaller phages may slip through.  This is where a healthy immune system and abstaining from smoking pick up.  Cigarette smoking is a substantial risk factor for important bacterial and viral infections. For example, smokers incur a 2- to 4-fold increased risk of invasive pneumococcal disease. (2004 study).  In addition, exposure to cigarette smoke causes MRSA bacteria (just one bacteria studied) to become even more resistant to killing by the immune system. (UCSanDiego Health News)  Of course, smoking through a dirty water pipe (bong) is inviting disaster!  Here are the details (mooselabs.us):

Bacteria, endotoxins and exotoxins are all around us (and even in us), but with good judgment and  precautions, you can avoid being one of the infection statistics!

Photo by CDC on Unsplash

Fiberglass: the air quality problem you didn’t consider

Fiberglass: the air quality problem you didn’t consider

With extreme weather issues such as storms and fires in the news, we can become very focused on mold from water damage and particulate matter (PM) from air pollution like smoke, but another problem has been silently causing lung and whole-body issues for decades: fiberglass insulation.

Fiberglass insulation, also known as glass wool, was accidentally invented in the 1930’s and patented in 1938 as Fiberglas.  It became a popular insulation for building and comes in batts, with a paper or plastic backing, or is available in loose form in bags, that can be blown into place.  Now fiberglass is used in: 

  • Appliances like dishwashers, refrigerators, ovens, exhaust fans, clothes dryers
  • Kerosene heaters and wood-burning stoves
  • roof shingles
  • Beds (also known as a silica sock)
  • Cigarette filters
  • HEPA and HVAC filters
  • Light fixtures
  • Carpets
  • Packing tape
  • And even some brands of toothpaste!

Children may be especially vulnerable to potential effects from fiberglass particle inhalation. “We’ve seen a substantial increase in air quality concerns from homeowners with young children experiencing chronic cough and eye irritation,” says Jeffrey Bradley, president of IndoorDoctor LLC. Bradley says fiberglass is often the culprit. (iqair.com)

Like most materials, fiberglass insulation degrades over time, and water speeds up the degradation process.  Therefore, although blown-in insulation is a popular choice for insulating attics and walls, leaving fiberglass exposed to humid air can cause the fibers to break and become airborne.  Typically, most manufacturers warn about wearing masks if you manually “disturb” the insulation by pushing past it or cutting into it.  However, loose fiberglass that is exposed to air currents can pick up these small fibers without manual disturbance, resulting in unhealthy PM2.5 levels in homes where it gets entrained into the air conditioning system.  

One woman has detailed her family’s project to remove all the fiberglass from their house after it was determined that fiberglass dust was making her sick.  Fiberglassawareness.com is a very useful website with many photos of where fiberglass is used in homes, and even cars and other buildings where you may not suspect it.  That pink (or yellow or white or green) stuff that you thought remained in the attic, doesn’t always stay where it belongs!  Wherever you can see exposed fiberglass, it may be emitting small particles into the air.  That means if it is peeking out of the ends of wrapped ducts, or falling (sometimes imperceptibly) out of can light fixtures, or being sucked into your AC system through small leaks in the ducts, it is in the air you breathe and can cause a myriad of health issues.  This page details a long list of fiberglass-exposure symptoms which overlap with mold-exposure symptoms, fibromyalgia symptoms, and auto-immune disorder symptoms, so the main culprit can be hard to diagnose.  In addition, many fiberglass insulation products use:

  • Phenol formaldehyde to bind the fiberglass fibers together (iqair.com), and the off-gassing of formaldehyde can cause similar symptoms. Formaldehyde is a carcinogen and exposure to fiberglass insulation formaldehyde causes brain cancer. According to John D. Spengler et.al., in the "Indoor Air Quality Handbook," residents of mobile homes who are exposed to fiberglass insulation are at increased risk of brain cancer. 
  • Styrene or Vinyl-Benzene is found in fiberglass insulation, and because benzene is used in many home other consumer products like water bottles, convenience food trays and wrappers, and feminine products, it contributes to a thick low-lying VOC cloud in some homes. According to Teresa Holler in the book "Holler for Your Health," styrene is toxic to the nervous system and exposure to styrene in fiberglass insulation causes behavioral changes, concentration problems, depression, tiredness, headaches, memory problems and weakness.  According to Andre E. Baert in the book "Biomedical and Health Research," long-term exposure to styrene in fiberglass insulation causes brain tumors and cancer. (ehow.com)
  • Methyl-ethyl-ketone (MEK) is used as a binder in some fiberglass.  Nick H. Proctor et.al., in the book "Proctor and Hughes' Chemical Hazards of the Workplace," list methyl ethyl ketone as a neurotoxin and exposure to MEK in fiberglass insulation as a cause for dizziness, nausea, headaches, depression and unconsciousness. (ehow.com)

According to the California Department of Public Health, frequent exposure to fiberglass insulation causes permanent changes in the central nervous system, the symptoms of which include personality changes, poor coordination, fatigue and poor concentration.(ehow.com)

How do you get rid of fiberglass in the air?  In some cases “encapsulation” can be an answer, which means that you can add a layer of protection over it.  We should never see exposed fiberglass (the brown paper side is supposed to be installed on the “warm” side, which in southern climates leaves the fiberglass exposed to the inside of the attic).  This real estate inspector wrote an article on encapsulation from the point of view that fiberglass is a poor air barrier and therefore should have a proper air barrier on both sides.  However, he notes at the end that a homeowner should not try to encapsulate any fiberglass himself, because of the risk of causing mold if moisture cannot escape.  

Here’s how you can minimize your exposure to fiberglass: 

  • Repair damaged sections of fiberglass insulation with proper foil duct tape.
  • If you have blown-in fiberglass in your attic or walls, seal all penetrations such as ceiling fixtures, wire and plumbing penetrations, light switches, and cracks in drywall
  • Check the internal condition of any “duct board” ducts or ducts internally insulated with fiberglass.  Unfortunately these degrade over time and cause the fibers to become entrained in the air.
  • If your health issues have not resolved, consider removing some or all of the fiberglass that could be causing them. 
  • Replace fiberglass insulation with ducts that are insulated with air bubble wrap, and walls and ceiling insulation with spray foam or cellulose insulation (however, be aware that cellulose insulation is treated with fire retardants to make it safe, which can cause other health issues to those who are sensitive). (nachi.org)

If you know or suspect that your health problems are being caused by fiberglass or VOCs that come from the fiberglass, keep a journal of how you feel during the day at different times, including where you are, what you are doing,  if the building’s HVAC is running, what you are wearing, eating, working with, etc.  It’s possible that you can find the link by putting the pieces together from your experiences, and from others’ experiences.  Research sites of others with environmental and chemical sensitivities, such as Fiberglassawareness.com, mychemicalfreehouse.net, and nontoxicforhealth.com (the latter two have a lot of scientific research on them), and don’t give up! 

Cart
  • No products in the cart.